
 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 1 of 168


Apple][Computer Information

Apple][
ProDOS Operating System

Technical Information

Apple Assembly Line • Bob Sander-Cederlof • 1983-1988

SOURCE
http://www.txbobsc.com/aal -- 08 December 2008

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 2 of 168

TABLE OF CONTENTS

Commented Listing of ProDOS -- $F800-$F90B, $F996-FEBD
ProDOS and Clock Drivers, with a Commented Listing of ProDOS $F142-$F1BE
Commented Listing of ProDOS -- $F90C-F995, $FD00-FE9A, $FEBE-FFFF
Will ProDOS Work on a Franklin?
Will ProDOS Really Fly?
More on ProDOS and Nonstandard Apples
Booting ProDOS with a Modified Monitor ROM
Finding Memory Size in ProDOS
Shrinking Code Inside ProDOS
Review: Apple ProDOS: Advanced Features for Programmers
DATE Command for ProDOS
Reading DOS 3.3 Disks With ProDOS
Multi-Level ProDOS Catalog
Commented Listing of ProDOS $F800-$F90B, $F996-FEBD
Put DOS and ProDOS Files on Same Disk
ProDOS Snooper
An Easier QUIT from ProDOS
Commented Listing of ProDOS QUIT Code
ProDOS MLI Tracing
Correction to DOS/ProDOS Double Init
Modifying ProDOS for Non-Standard ROMs
New ProDOS Program Selector
The ProDOS QUIT-code Installer
Using DP18 Under ProDOS
Updated Memory vs.File Maps for ProDOS
Compatibility with the Laser-128
Thoughts on the ProDOS Bit Map
New ProDOS Bug and Fix
New ProDOS Book: ProDOS Inside and Out
Commented Listing of ProDOS -- $DE00-DEF2
Another Update to Bob's ProDOS Program Selector
Little Bugs in ProDOS /RAM
ProDOS-based Intelligent Disassembler
Some Bugs in Apple's ProDOS Version 1.3
Commented Listing of ProDOS -- $DEF3-DFE4
New Supplement to "Beneath Apple ProDOS" Available
Missing ProDOS Books
More About Patching Apple's ProDOS Releases
Correction to ProDOS Patcher
Review: "Apple IIgs ProDOS-16 Reference"
Another ProDOS-8 Bug in the IIgs
How to Clear the Back-Up Bit
It's 1988, and ProDOS Thinks it's 1982
Printing the ProDOS Date and Time
BLOADing Directories

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 3 of 168

Commented Listing of ProDOS -- $F800-$F90B, $F996-FEBD

November 1983

ProDOS boots its bulk into the RAM card, from $D000 thru $FFFF. More is loaded into
the alternate $D000-DFFF space, and all but 255 bytes are reserved out of the entire
16K space.

A system global page is maintained from $BF00-BFFF, for various variables and linkage
routines. All communication between machine language programs and ProDOS is supposed
to be through MLI (Machine Language Interface) calls and the system global page.

One of the first things I did with ProDOS was to start dis-assembling and commenting
it. I want to know what is inside and how it works! Apple's 4-inch thick binder tells
a lot, but not all.

Right away I ran into a roadblock: to disassemble out of the RAM card it has to be
turned on. There is no monitor in the RAM card when ProDOS is loaded. Turning on the
RAM card from the motherboard monitor causes a loud crash!

I overcame most of the problem by copying a monitor into the $F800-FFFF region of the
RAM card like this:

 *C089 C089 F800<F800.FFFFM
 *C083 C083

The double C089 write-enables the RAM card, while memory reads are still from the
motherboard. The rest of the line copies a monitor up. The two C083's get me into the
RAM card monitor, ready to type things like "D000LLLLLLLLLLLL"

But what about dis-assemblies of the space between $F800 and $FFFF? For this I had to
write a little move program. My program turned on the RAM card and copied $F800-FFFF
down to $6800-6FFF. Then I BSAVEd it, and later disassembled it.

The code from $F800-FFFF is mostly equivalent to what is in DOS 3.3 from $B800-BFFF.
First I found a read/write block subroutine, which calls an RWTS-like subroutine
twice per block. (All ProDOS works with 512-byte blocks, rather than sectors; this is
like Apple Pascal, and the Apple ///.)

The listing which follows shows the RWB and RWTS subroutines, along with the
READ.ADDRESS and READ.SECTOR subroutines. Next month I plan to lay out the SEEK.TRACK
and WRITE.SECTOR subroutines, as well as the interrupt and reset handling code.

The outstanding difference between ProDOS and DOS 3.3 disk I/O is speed. ProDOS is
considerably faster. Most of the speed increase is due to handling the conversion
between memory-bytes and disk-bytes on the fly. DOS pre-converted a 256-byte block
into 342 bytes in a special buffer, and then wrote the 342 bytes; ProDOS forms the
first 86 bytes of the disk data in a special buffer, writes them, and then proceeds
to write the rest of the data directly from the caller's buffer. When reading, DOS
read the 342 disk-bytes into a buffer for later decoding into the caller's buffer.
ProDOS reads and decodes simultaneously directly into the caller's buffer. This is
achieved by extensive use of tables and self-modifying code.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 4 of 168

Not only is direct time saved by doing a lot less copying of buffers, but also the
sector interleaving can be arranged so that only two revolutions are required to read
all 8 blocks on a track.

I believe Apple Pascal uses the same technique, at least for reading.

Whoever coded ProDOS decided to hard-code some parameters which DOS used to keep in
tables specified by the user. For example, the number which tells how long to wait
for a drive motor to rev up used to be kept in a Device Characteristics Table (DCT).
That value is now inside a "LDA #$E8" instruction at $F84F. That means that if you
are using a faster drive you have to figure out how to patch and unpatch ProDOS to
take advantage of it.

Another hard-coded parameter is the maximum block number. This is no longer part of
the data on an initialized disk. It is now locked into the four instructions at
$F807-F80D, at a maximum of 279. If you have a 40- or 70-track drive, you can only
use 35. Speaking of tracks, the delay tables for track seeking are still used, but
they are of course buried in this same almost-unreachable area. If you have a drive
with faster track-to-track stepping, the table to change is at $FB73-FB84.

Calls to RWTS in DOS 3.3 involved setting up two tables, an IOB and a DCT. The IOB
contained all the data about slot, drive, track, sector, buffer address, etc. The DCT
was a 5-byte table with data concerning the drive. ProDOS RWB is called in an
entirely different way. A fixed-position table located at $42-47 in page zero is set
up with the command, slot, buffer address, and block number.

There are three valid commands, which I call test, read, and write. Test (0) starts
up the indicated drive. If it is successful, a normal return occurs; if not, you get
an error return (carry set, and (A) non-zero). Read (1) and write (2) are what you
expect them to be. RWB has a very simple job: validate the call parameters in $42-47,
convert block number to track and sector, and call RWTS twice (once for each sector
of the block).

ProDOS RWTS expects the sector number in the A-register, and the track in a variable
at $FB56. RWTS handles turning on the drive motor and waiting for it to come up to
speed. RWTS then calls SEEK.TRACK to find the desired track, READ.ADDRESS to find the
selected sector, and branches to READ.SECTOR or WRITE.SECTOR depending on the
command.

READ.ADDRESS is virtually the same in ProDOS as it was in DOS 3.3. READ.SECTOR is
entirely different. I should point out here that ProDOS diskettes are entirely
compatible with Apple /// diskettes. The file structures are exactly the same. Both
ProDOS and Apple /// diskettes use the same basic recording techniques on the disk as
DOS 3.3, so the diskettes are copyable using standard DOS 3.3 copiers such as the
COPYA program on your old System Master Diskette.

READ.SECTOR begins by computing several addresses and plugging them into the code
further down. (This enables the use of faster addressing modes, saving enough cycles
to leave time for complete decoding of disk data on the fly.) First the disk slot
number is merged into the instructions which read bytes from the drive. Next the
caller's buffer address is put into the store instructions.

Note that the byte from the disk is loaded into the X-register, then used to index
into BYTE.TABLE, at $F996, to get the equivalent 6-bit data value. Since a disk byte
may only have certain values, there is some space within BYTE.TABLE that will never
be accessed. Most of this unused space contains $FF bytes, but some of it is used for

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 5 of 168

other small tables: BIT.PAIR.LEFT, .MIDDLE, and .RIGHT, and DATA.TRAILER. These are
used by WRITE.SECTOR, which we'll look at next month.

Your buffer is divided into three parts: two 86-byte chunks, and one of 84 bytes.
Data coming from the disk is in four chunks: three of 86 bytes, and one of 84.

The first chunk contains the lower two bits from every byte in the original data.
READ.SECTOR reads this chunk into TBUF, so that the bits will be available later for
merging with the upper six of each byte. ($FC53-FC68)

The second chunk contains the upper six bits from the first 86 bytes of the original
data. $FC69-FC83 reads the chunk and merges in the lower two bits from TBUF, storing
the completed bytes in the first 85 bytes of the caller's buffer. The last (86th)
byte is saved on the stack (I am not sure why), and not stored in the caller's buffer
until after all the rest of the data has been read.

A tricky manipulation is necessary to merge in those lower two bits. The data in TBUF
has those bits in backward order, packed together with the bits from the other
chunks. There was a good diagram of this on page 10 of the June 1981 issue of AAL.
DOS merged them with a complex time-consuming shifting process. ProDOS does a swift
table lookup, using the TBUF byte as an index to the BIT.PAIR.TABLE.

BIT.PAIR.TABLE has four bytes per row. The first three in each row supply the bit
pairs; the fourth is used by SECTOR.WRITE to encode data, and will be covered next
month.

When $FC69-FC83 is reading the first chunk, the first byte in each row is used to
supply the lower two data bits. The byte in TBUF corresponding to the current
position in the chunk selects a byte from BIT.PAIR.TABLE, and the two parts are
merged together.

The next two chunks are handled just like the one I just described. After all the
data has been read, READ.SECTOR expects to have accumulated a checksum of 00, and
expects to find a trailing $EB after the data. Return with carry clear indicates all
went well; carry set indicates a read error (bad checksum, missing header, or missing
trailer).

I can't help wondering: can this fast read technique be fit into DOS 3.3? It takes a
little more code and table space, but on the other hand it uses 256 bytes less of
intermediate buffer. If we sacrificed the INIT command, could both the fast read and
write be squeezed into DOS 3.3?

For more good information on ProDOS, be sure to take a look at Tom Weishaar's DOStalk
column in the current issue of Softalk.

 1000 .TI 76,PRODOS F800-FFFF.....COMMENTED BY RBS-C 11-8-83............
 1010 *SAVE S.PRODOS F800-FFFF
 1020 *--------------------------------
 1030 RUNNING.SUM .EQ $3A
 1040 TBUF.0 .EQ $3A
 1050 BYTE.AT.BUF00 .EQ $3B
 1060 BYTE.AT.BUF01 .EQ $3C
 1070 LAST.BYTE .EQ $3D
 1080 SLOT.X16 .EQ $3E
 1090 INDEX.OF.LAST.BYTE .EQ $3F
 1100 *--------------------------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 6 of 168

 1110 RWB.COMMAND .EQ $42
 1120 RWB.SLOT .EQ $43 DSSSXXXX
 1130 RWB.BUFFER .EQ $44,45
 1140 RWB.BLOCK .EQ $46,47 0...279
 1150 *--------------------------------
 1160 BUFF.BASE .EQ $4700 DUMMY ADDRESS FOR ASSEMBLY ONLY
 1170 *--------------------------------
 1180 SAVE.LOC45 .EQ $BF56
 1190 SAVE.D000 .EQ $BF57
 1200 INTAREG .EQ $BF88
 1210 INTBANKID .EQ $BF8D
 1220 IRQXIT.3 .EQ $BFD3
 1230 *--------------------------------
 1240 DRV.PHASE .EQ $C080
 1250 DRV.MTROFF .EQ $C088
 1260 DRV.MTRON .EQ $C089
 1270 DRV.ENBL.0 .EQ $C08A
 1280 DRV.Q6L .EQ $C08C
 1290 DRV.Q6H .EQ $C08D
 1300 DRV.Q7L .EQ $C08E
 1310 DRV.Q7H .EQ $C08F
 1320 *--------------------------------
 1330 * <<<COMPUTED >>>
 1340 MODIFIER .EQ $60 <<<SLOT * 16>>>
 1350 *--------------------------------
 1360 .OR $F800
 1370 .TA $800
 1380 *--------------------------------
 1390 * READ/WRITE A BLOCK
 1400 *
 1410 * 1. ASSURE VALID BLOCK NUMBER (0...279)
 1420 * 2. CONVERT BLOCK NUMBER TO TRACK/SECTOR
 1430 * TRACK = INT(BLOCK/8)
 1440 * BLOCK SECTORS
 1450 * ----- ---------
 1460 * 0 0 AND 2
 1470 * 1 4 AND 6
 1480 * 2 8 AND 10
 1490 * 3 12 AND 14
 1500 * 4 1 AND 3
 1510 * 5 5 AND 7
 1520 * 6 9 AND 11
 1530 * 7 13 AND 15
 1540 * 3. CALL RWTS TWICE
 1550 * 4. RETURN WITH ERROR STATUS
 1560 *--------------------------------
 1570 RWB
 1580 LDA RWB.BLOCK BLOCK MUST BE 0...279
 1590 LDX RWB.BLOCK+1
 1600 STX RWTS.TRACK
 1610 BEQ .1 ...BLOCK # LESS THAN 256
 1620 DEX
 1630 BNE .5 ...BLOCK # MORE THAN 511
 1640 CMP #$18
 1650 BCS .5 ...BLOCK # MORE THAN 279
 1660 .1 LDY #5 SHIFT 5 BITS OF TRACK #

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 7 of 168

 1670 .2 ASL RWTS.TRACK A-REG
 1680 ROL RWTS.TRACK ---------- --------
 1690 DEY 00TTTTTT ABC00000
 1700 BNE .2
 1710 ASL TRANSFORM BLOCK # INTO SECTOR #
 1720 BCC .3 ABC00000 --> 0000BC0A
 1730 ORA #$10
 1740 .3 LSR
 1750 LSR
 1760 LSR
 1770 LSR
 1780 PHA
 1790 JSR RWTS R/W FIRST SECTOR OF BLOCK
 1800 PLA
 1810 BCS .4 ...ERROR
 1820 INC RWB.BUFFER+1
 1830 ADC #2
 1840 JSR RWTS R/W SECOND SECTOR OF BLOCK
 1850 DEC RWB.BUFFER+1
 1860 .4 LDA RWTS.ERROR
 1870 RTS
 1880 *---BLOCK NUMBER > 279-----------
 1890 .5 LDA #$27 I/O ERROR
 1900 SEC
 1910 RTS
 1920 *--------------------------------
 1930 * READ/WRITE A GIVEN SECTOR
 1940 *--------------------------------
 1950 RWTS
 1960 LDY #1 TRY SEEKING TWICE
 1970 STY SEEK.COUNT
 1980 STA RWTS.SECTOR
 1990 LDA RWB.SLOT
 2000 AND #$70 0SSS0000
 2010 STA SLOT.X16
 2020 JSR WAIT.FOR.OLD.MOTOR.TO.STOP
 2030 JSR CHECK.IF.MOTOR.RUNNING
 2040 PHP SAVE ANSWER (.NE. IF RUNNING)
 2050 LDA #$E8 MOTOR STARTING TIME
 2060 STA MOTOR.TIME+1 ONLY HI-BYTE NECESSARY
 2070 LDA RWB.SLOT SAME SLOT AND DRIVE?
 2080 CMP OLD.SLOT
 2090 STA OLD.SLOT
 2100 PHP SAVE ANSWER
 2110 ASL DRIVE # TO C-BIT
 2120 LDA DRV.MTRON,X START MOTOR
 2130 BCC .1 ...DRIVE 0
 2140 INX ...DRIVE 1
 2150 .1 LDA DRV.ENBL.0,X ENABLE DRIVE X
 2160 PLP SAME SLOT/DRIVE?
 2170 BEQ .3 ...YES
 2180 PLP DISCARD ANSWER ABOUT MOTOR GOING
 2190 LDY #7 DELAY 150-175 MILLISECS
 2200 .2 JSR DELAY.100 DELAY 25 MILLISECS
 2210 DEY
 2220 BNE .2

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 8 of 168

 2230 PHP SAY MOTOR NOT ALREADY GOING
 2240 .3 LDA RWB.COMMAND 0=TEST, 1=READ, 2=WRITE
 2250 BEQ .4 ...0, MERELY TEST
 2260 LDA RWTS.TRACK
 2270 JSR SEEK.TRACK
 2280 .4 PLP WAS MOTOR ALREADY GOING?
 2290 BNE .6 ...YES
 2300 .5 LDA #1 DELAY 100 USECS
 2310 JSR DELAY.100
 2320 LDA MOTOR.TIME+1
 2330 BMI .5 ...WAIT TILL IT OUGHT TO BE
 2340 JSR CHECK.IF.MOTOR.RUNNING
 2350 BEQ .14 ...NOT RUNNING YET, ERROR
 2360 .6 LDA RWB.COMMAND
 2370 BEQ .17 CHECK IF WRITE PROTECTED
 2380 LSR .CS. IF READ, .CC. IF WRITE
 2390 BCS .7 ...READ
 2400 JSR PRE.NYBBLE ...WRITE
 2410 .7 LDY #64 TRY 64 TIMES TO FIND THE SECTOR
 2420 STY SEARCH.COUNT
 2430 .8 LDX SLOT.X16
 2440 JSR READ.ADDRESS
 2450 BCC .10 ...FOUND IT
 2460 .9 DEC SEARCH.COUNT
 2470 BPL .8 ...KEEP LOOKING
 2480 LDA #$27 I/O ERROR CODE
 2490 DEC SEEK.COUNT ANY TRIES LEFT?
 2500 BNE .14 ...NO, I/O ERROR
 2510 LDA CURRENT.TRACK
 2520 PHA
 2530 ASL SLIGHT RE-CALIBRATION
 2540 ADC #$10
 2550 LDY #64 ANOTHER 64 TRIES
 2560 STY SEARCH.COUNT
 2570 BNE .11 ...ALWAYS
 2580 .10 LDY HDR.TRACK ACTUAL TRACK FOUND
 2590 CPY CURRENT.TRACK
 2600 BEQ .12 FOUND THE RIGHT ONE
 2610 LDA CURRENT.TRACK WRONG ONE, TRY AGAIN
 2620 PHA
 2630 TYA STARTING FROM TRACK FOUND
 2640 ASL
 2650 .11 JSR UPDATE.TRACK.TABLE
 2660 PLA
 2670 JSR SEEK.TRACK
 2680 BCC .8 ...ALWAYS
 2690 .12 LDA HDR.SECTOR
 2700 CMP RWTS.SECTOR
 2710 BNE .9
 2720 LDA RWB.COMMAND
 2730 LSR
 2740 BCC .15 ...WRITE
 2750 JSR READ.SECTOR ...READ
 2760 BCS .9 ...READ ERROR
 2770 .13 LDA #0 NO ERROR
 2780 .HS D0 "BNE"...NEVER, JUST SKIPS "SEC"

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 9 of 168

 2790 .14 SEC ERROR
 2800 STA RWTS.ERROR SAVE ERROR CODE
 2810 LDA DRV.MTROFF,X STOP MOTOR
 2820 RTS RETURN
 2830 *--------------------------------
 2840 .15 JSR WRITE.SECTOR
 2850 .16 BCC .13 ...NO ERROR
 2860 LDA #$2B WRITE PROTECTED ERROR CODE
 2870 BNE .14 ...ALWAYS
 2880 .17 LDX SLOT.X16 CHECK IF WRITE PROTECTED
 2890 LDA DRV.Q6H,X
 2900 LDA DRV.Q7L,X
 2910 ROL
 2920 LDA DRV.Q6L,X
 2930 JMP .16 GIVE ERROR IF PROTECTED
 [SEEK.TRACK is in this gap. It will be published next month.]
 [The following tables start at $F996.]

 3660 *--------------------------------
 3670 * VALUE READ FROM DISK IS INDEX INTO THIS TABLE
 3680 * TABLE ENTRY GIVES TOP 6 BITS OF ACTUAL DATA
 3690 *
 3700 * OTHER DATA TABLES ARE IMBEDDED IN THE UNUSED
 3710 * PORTIONS OF THE BYTE.TABLE
 3720 *--------------------------------
 3730 BYTE.TABLE .EQ *-$96
 3740 .HS 0004FFFF080CFF101418
 3750 BIT.PAIR.LEFT
 3760 .HS 008040C0
 3770 .HS FFFF1C20FFFFFF24282C
 3780 .HS 3034FFFF383C4044
 3790 .HS 484CFF5054585C606468
 3800 BIT.PAIR.MIDDLE
 3810 .HS 00201030
 3820 DATA.TRAILER
 3830 .HS DEAAEBFF
 3840 .HS FFFFFF6CFF70
 3850 .HS 7478FFFFFF7CFFFF
 3860 .HS 8084FF888C9094989CA0
 3870 BIT.PAIR.RIGHT
 3880 .HS 0008040C
 3890 .HS FFA4A8ACFFB0B4B8BCC0
 3900 .HS C4C8FFFFCCD0D4D8
 3910 .HS DCE0FFE4E8ECF0F4
 3920 .HS F8FC
 3930 *--------------------------------
 3940 BIT.PAIR.TABLE
 3950 .HS 00000096
 3960 .HS 02000097
 3970 .HS 0100009A
 3980 .HS 0300009B
 3990 .HS 0002009D
 4000 .HS 0202009E
 4010 .HS 0102009F
 4020 .HS 030200A6
 4030 .HS 000100A7

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 10 of 168

 4040 .HS 020100AB
 4050 .HS 010100AC
 4060 .HS 030100AD
 4070 .HS 000300AE
 4080 .HS 020300AF
 4090 .HS 010300B2
 4100 .HS 030300B3
 4110 .HS 000002B4
 4120 .HS 020002B5
 4130 .HS 010002B6
 4140 .HS 030002B7
 4150 .HS 000202B9
 4160 .HS 020202BA
 4170 .HS 010202BB
 4180 .HS 030202BC
 4190 .HS 000102BD
 4200 .HS 020102BE
 4210 .HS 010102BF
 4220 .HS 030102CB
 4230 .HS 000302CD
 4240 .HS 020302CE
 4250 .HS 010302CF
 4260 .HS 030302D3
 4270 .HS 000001D6
 4280 .HS 020001D7
 4290 .HS 010001D9
 4300 .HS 030001DA
 4310 .HS 000201DB
 4320 .HS 020201DC
 4330 .HS 010201DD
 4340 .HS 030201DE
 4350 .HS 000101DF
 4360 .HS 020101E5
 4370 .HS 010101E6
 4380 .HS 030101E7
 4390 .HS 000301E9
 4400 .HS 020301EA
 4410 .HS 010301EB
 4420 .HS 030301EC
 4430 .HS 000003ED
 4440 .HS 020003EE
 4450 .HS 010003EF
 4460 .HS 030003F2
 4470 .HS 000203F3
 4480 .HS 020203F4
 4490 .HS 010203F5
 4500 .HS 030203F6
 4510 .HS 000103F7
 4520 .HS 020103F9
 4530 .HS 010103FA
 4540 .HS 030103FB
 4550 .HS 000303FC
 4560 .HS 020303FD
 4570 .HS 010303FE
 4580 .HS 030303FF
 4590 *--------------------------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 11 of 168

 4600 TBUF .BS 86
 4610 *--------------------------------
 4620 RWTS.TRACK .HS 07
 4630 RWTS.SECTOR .HS 0F
 4640 RWTS.ERROR .HS 00
 4650 OLD.SLOT .HS 60
 4660 CURRENT.TRACK .HS 07
 4670 .HS 00
 4680 *--------------------------------
 4690 OLD.TRACK.TABLE .EQ *-4
 4700 .HS 0000 SLOT 2, DRIVE 0--DRIVE 1
 4710 .HS 0000 SLOT 3
 4720 .HS 0000 SLOT 4
 4730 .HS 0000 SLOT 5
 4740 .HS 0E00 SLOT 6
 4750 .HS 0000 SLOT 7
 4760 *--------------------------------
 4770 .HS 00
 4780 *--------------------------------
 4790 SEARCH.COUNT .BS 1
 4800 SEEK.COUNT .BS 1
 4810 STEP.CNT .EQ *
 4820 SEEK.D5.CNT .EQ *
 4830 X1X1X1X1 .BS 1 ALSO STEP.CNT & SEEK.D5.CNT
 4840 CHECK.SUM .BS 1
 4850 HDR.CHKSUM .BS 1
 4860 HDR.SECTOR .BS 1
 4870 HDR.TRACK .EQ *
 4880 MOTOR.TIME .BS 2 ALSO HDR.TRACK & HDR.VOLUME
 4890 CURRENT.TRACK.OLD .BS 1
 4900 TARGET.TRACK .BS 1
 4910 *--------------------------------
 4920 * DELAY TIMES FOR ACCELERATION & DECELERATION
 4930 * OF TRACK STEPPING MOTOR
 4940 *--------------------------------
 4950 ONTBL .HS 01302824201E1D1C1C
 4960 OFFTBL .HS 702C26221F1E1D1C1C
 4970 *--------------------------------
 4980 * DELAY ABOUT 100*A MICROSECONDS
 4990 * RUN DOWN MOTOR.TIME WHILE DELAYING
 5000 *--------------------------------
 5010 DELAY.100
 5020 .1 LDX #17
 5030 .2 DEX
 5040 BNE .2
 5050 INC MOTOR.TIME
 5060 BNE .3
 5070 INC MOTOR.TIME+1
 5080 .3 SEC
 5090 SBC #1
 5100 BNE .1
 5110 RTS
 5120 *--------------------------------
 5130 READ.ADDRESS
 5140 LDY #$FC TRY 772 TIMES TO FIND $D5
 5150 STY SEEK.D5.CNT (FROM $FCFC TO $10000)

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 12 of 168

 5160 .1 INY
 5170 BNE .2 ...KEEP TRYING
 5180 INC SEEK.D5.CNT
 5190 BEQ .11 ...THAT IS ENUF!
 5200 .2 LDA DRV.Q6L,X GET NEXT BYTE
 5210 BPL .2
 5220 .3 CMP #$D5 IS IT $D5?
 5230 BNE .1 ...NO, TRY AGAIN
 5240 NOP ...YES, DELAY
 5250 .4 LDA DRV.Q6L,X GET NEXT BYTE
 5260 BPL .4
 5270 CMP #$AA NOW NEED $AA AND $96
 5280 BNE .3 ...NO, BACK TO $D5 SEARCH
 5290 LDY #3 (READ 3 BYTES LATER)
 5300 .5 LDA DRV.Q6L,X GET NEXT BYTE
 5310 BPL .5
 5320 CMP #$96 BETTER BE...
 5330 BNE .3 ...IT IS NOT
 5340 SEI ...NO INTERRUPTS NOW
 5350 LDA #0 START CHECK SUM
 5360 .6 STA CHECK.SUM
 5370 .7 LDA DRV.Q6L,X GET NEXT BYTE
 5380 BPL .7 1X1X1X1X
 5390 ROL X1X1X1X1
 5400 STA X1X1X1X1
 5410 .8 LDA DRV.Q6L,X GET NEXT BYTE
 5420 BPL .8 1Y1Y1Y1Y
 5430 AND X1X1X1X1 XYXYXYXY
 5440 STA HDR.CHKSUM,Y
 5450 EOR CHECK.SUM
 5460 DEY
 5470 BPL .6
 5480 TAY CHECK CHECKSUM
 5490 BNE .11 NON-ZERO, ERROR
 5500 .9 LDA DRV.Q6L,X GET NEXT BYTE
 5510 BPL .9
 5520 CMP #$DE TRAILER EXPECTED $DE.AA.EB
 5530 BNE .11 NO, ERROR
 5540 NOP
 5550 .10 LDA DRV.Q6L,X
 5560 BPL .10
 5570 CMP #$AA
 5580 BNE .11 NO, ERROR
 5590 CLC
 5600 RTS
 5610 .11 SEC
 5620 RTS
 5630 *--------------------------------
 5640 READ.SECTOR
 5650 TXA SLOT*16 ($60 FOR SLOT 6)
 5660 ORA #$8C BUILD Q6L ADDRESS FOR SLOT
 5670 STA .9+1 STORE INTO READ-DISK OPS
 5680 STA .12+1
 5690 STA .13+1
 5700 STA .15+1
 5710 STA .18+1

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 13 of 168

 5720 LDA RWB.BUFFER PLUG CALLER'S BUFFER
 5730 LDY RWB.BUFFER+1 ADDRESS INTO STORE'S
 5740 STA .17+1 PNTR FOR LAST THIRD
 5750 STY .17+2
 5760 SEC PNTR FOR MIDDLE THIRD
 5770 SBC #84
 5780 BCS .1
 5790 DEY
 5800 .1 STA .14+1
 5810 STY .14+2
 5820 SEC PNTR FOR BOTTOM THIRD
 5830 SBC #87
 5840 BCS .2
 5850 DEY
 5860 .2 STA .11+1
 5870 STY .11+2
 5880 *---FIND $D5.AA.AD HEADER--------
 5890 LDY #32 MUST FIND $D5 WITHIN 32 BYTES
 5900 .3 DEY
 5910 BEQ .10 ERROR RETURN
 5920 .4 LDA DRV.Q6L,X
 5930 BPL .4
 5940 .5 EOR #$D5
 5950 BNE .3
 5960 NOP
 5970 .6 LDA DRV.Q6L,X
 5980 BPL .6
 5990 CMP #$AA
 6000 BNE .5
 6010 NOP
 6020 .7 LDA DRV.Q6L,X
 6030 BPL .7
 6040 CMP #$AD
 6050 BNE .5
 6060 *---READ 86 BYTES INTO TBUF...TBUF+85----------
 6070 *---THESE ARE THE PACKED LOWER TWO BITS--------
 6080 *---FROM EACH BYTE OF THE CALLER'S BUFFER.-----
 6090 LDY #170
 6100 LDA #0 INIT RUNNING EOR-SUM
 6110 .8 STA RUNNING.SUM
 6120 .9 LDX DRV.Q6L+MODIFIER READ NEXT BYTE
 6130 BPL .9
 6140 LDA BYTE.TABLE,X DECODE DATA
 6150 STA TBUF-170,Y
 6160 EOR RUNNING.SUM
 6170 INY
 6180 BNE .8
 6190 *---READ NEXT 86 BYTES-------------------------
 6200 *---STORE 1ST 85 IN BUFFER...BUFFER+84---------
 6210 *---SAVE THE 86TH BYTE ON THE STACK------------
 6220 LDY #170
 6230 BNE .12 ...ALWAYS
 6240 *--
 6250 .10 SEC I/O ERROR EXIT
 6260 RTS
 6270 *--

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 14 of 168

 6280 .11 STA BUFF.BASE-171,Y
 6290 .12 LDX DRV.Q6L+MODIFIER READ NEXT BYTE
 6300 BPL .12
 6310 EOR BYTE.TABLE,X DECODE DATA
 6320 LDX TBUF-170,Y MERGE LOWER 2 BITS
 6330 EOR BIT.PAIR.TABLE,X
 6340 INY
 6350 BNE .11
 6360 PHA SAVE LAST BYTE (LATER BUFFER+85)
 6370 *---READ NEXT 86 BYTES-----------
 6380 *---STORE AT BUFFER+86...BUFFER+171------------
 6390 AND #$FC MASK FOR RUNNING EOR.SUM
 6400 LDY #170
 6410 .13 LDX DRV.Q6L+MODIFIER READ NEXT BYTE
 6420 BPL .13
 6430 EOR BYTE.TABLE,X DECODE DATA
 6440 LDX TBUF-170,Y MERGE LOWER 2 BITS
 6450 EOR BIT.PAIR.TABLE+1,X
 6460 .14 STA BUFF.BASE-84,Y
 6470 INY
 6480 BNE .13
 6490 *---READ NEXT 84 BYTES-------------------------
 6500 *---INTO BUFFER+172...BUFFER+255---------------
 6510 .15 LDX DRV.Q6L+MODIFIER READ NEXT BYTE
 6520 BPL .15
 6530 AND #$FC
 6540 LDY #172
 6550 .16 EOR BYTE.TABLE,X DECODE DATA
 6560 LDX TBUF-172,Y MERGE LOWER 2 BITS
 6570 EOR BIT.PAIR.TABLE+2,X
 6580 .17 STA BUFF.BASE,Y
 6590 .18 LDX DRV.Q6L+MODIFIER READ NEXT BYTE
 6600 BPL .18
 6610 INY
 6620 BNE .16
 6630 AND #$FC
 6640 *---END OF DATA------------------
 6650 EOR BYTE.TABLE,X DECODE DATA
 6660 BNE .20 ...BAD CHECKSUM
 6670 LDX SLOT.X16 CHECK FOR TRAILER $DE
 6680 .19 LDA DRV.Q6L,X
 6690 BPL .19
 6700 CMP #$DE
 6710 CLC
 6720 BEQ .21 ...GOOD READ!
 6730 .20 SEC ...SIGNAL BAD READ
 6740 .21 PLA STORE BYTE AT BUFFER+85
 6750 LDY #85
 6760 STA (RWB.BUFFER),Y
 6770 RTS
 6780 *--------------------------------
 6790 UPDATE.TRACK.TABLE
 6800 JSR GET.SSSD.IN.X
 6810 STA OLD.TRACK.TABLE,X
 6820 RTS
 6830 *--------------------------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 15 of 168

 6840 CHECK.IF.MOTOR.RUNNING
 6850 LDX SLOT.X16
 6860 CHECK.IF.MOTOR.RUNNING.X
 6870 LDY #0
 6880 .1 LDA DRV.Q6L,X READ CURRENT INPUT REGISTER
 6890 JSR .2 ...12 CYCLES...
 6900 PHA ...7 MORE CYCLES...
 6910 PLA
 6920 CMP DRV.Q6L,X BY NOW INPUT REGISTER
 6930 BNE .2 SHOULD HAVE CHANGED
 6940 LDA #$28 ERROR CODE: NO DEVICE CONNECTED
 6950 DEY BUT TRY 255 MORE TIMES
 6960 BNE .1 ...RETURN .NE. IF MOVING...
 6970 .2 RTS ...RETURN .EQ. IF NOT MOVING...
 6980 *--------------------------------
 6990 GET.SSSD.IN.X
 7000 PHA SAVE A-REG
 7010 LDA RWB.SLOT DSSSXXXX
 7020 LSR
 7030 LSR
 7040 LSR
 7050 LSR 0000DSSS
 7060 CMP #8 SET CARRY IF DRIVE 2
 7070 AND #7 00000SSS
 7080 ROL 0000SSSD
 7090 TAX INTO X-REG
 7100 PLA RESTORE A-REG
 7110 RTS
 7120 *--------------------------------
 7130 WRITE.SECTOR
 7140 SEC IN CASE WRITE-PROTECTED
 7150 LDA DRV.Q6H,X
 7160 LDA DRV.Q7L,X
 7170 BPL .1 ...NOT WRITE PROTECTED
 7180 JMP WS.RET ...PROTECTED, ERROR
 7190 *--------------------------------
 7200 .1 LDA TBUF
 7210 STA TBUF.0
 7220 *---WRITE 5 SYNC BYTES-----------
 7230 LDA #$FF
 7240 STA DRV.Q7H,X
 7250 ORA DRV.Q6L,X
 7260 LDY #4
 7270 NOP $FF AT 40-CYCLE INTERVALS LEAVES
 7280 PHA TWO ZERO-BITS AFTER EACH $FF
 7290 PLA
 7300 .2 PHA
 7310 PLA
 7320 JSR WRITE2
 7330 DEY
 7340 BNE .2
 7350 *---WRITE $D5 AA AD HEADER-------
 7360 LDA #$D5
 7370 JSR WRITE1
 7380 LDA #$AA
 7390 JSR WRITE1

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 16 of 168

 7400 LDA #$AD
 7410 JSR WRITE1
 7420 *---WRITE 86 BYTES FROM TBUF-------------------
 7430 *---BACKWARDS: TBUF+85...TBUF+1, TBUF.0------
 7440 TYA =0
 7450 LDY #86
 7460 BNE .4
 7470 .3 LDA TBUF,Y
 7480 .4 EOR TBUF-1,Y
 7490 TAX
 7500 LDA BIT.PAIR.TABLE+3,X
 7510 LDX SLOT.X16
 7520 STA DRV.Q6H,X
 7530 LDA DRV.Q6L,X
 7540 DEY
 7550 BNE .3
 7560 LDA TBUF.0
 7570 *---WRITE PORTION OF BUFFER------
 7580 *---UP TO A PAGE BOUNDARY--------
 7590 LDY #*-* FILLED IN WITH LO-BYTE OF BUFFER ADDRESS
 7600 WS...5 EOR BUFF.BASE,Y HI-BYTE FILLED IN
 7610 AND #$FC
 7620 TAX
 7630 LDA BIT.PAIR.TABLE+3,X
 7640 WS...6 LDX #MODIFIER
 7650 STA DRV.Q6H,X
 7660 LDA DRV.Q6L,X
 7670 WS...7 LDA BUFF.BASE,Y HI-BYTE FILLED IN
 7680 INY
 7690 BNE WS...5
 7700 *---BRANCH ACCORDING TO BUFFER BOUNDARY CONDITIONS-----
 7710 LDA BYTE.AT.BUF00
 7720 BEQ WS..17 ...BUFFER ALL IN ONE PAGE
 7730 LDA INDEX.OF.LAST.BYTE
 7740 BEQ WS..16 ...ONLY ONE BYTE IN NEXT PAGE
 7750 *---MORE THAN ONE BYTE IN NEXT PAGE--------------------
 7760 LSR ...DELAY TWO CYCLES
 7770 LDA BYTE.AT.BUF00 PRE.NYBBLE ALREADY ENCODED
 7780 STA DRV.Q6H,X THIS BYTE
 7790 LDA DRV.Q6L,X
 7800 LDA BYTE.AT.BUF01
 7810 NOP
 7820 INY
 7830 BCS WS..12
 7840 WS...8 EOR BUFF.BASE+256,Y HI-BYTE FILLED IN
 7850 AND #$FC
 7860 TAX
 7870 LDA BIT.PAIR.TABLE+3,X
 7880 WS...9 LDX #MODIFIER
 7890 STA DRV.Q6H,X
 7900 LDA DRV.Q6L,X
 7910 WS..10 LDA BUFF.BASE+256,Y HI-BYTE FILLED IN
 7920 INY
 7930 WS..11 EOR BUFF.BASE+256,Y HI-BYTE FILLED IN
 7940 WS..12 CPY INDEX.OF.LAST.BYTE
 7950 AND #$FC

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 17 of 168

 7960 TAX
 7970 LDA BIT.PAIR.TABLE+3,X
 7980 WS..13 LDX #MODIFIER
 7990 STA DRV.Q6H,X
 8000 LDA DRV.Q6L,X
 8010 WS..14 LDA BUFF.BASE+256,Y HI-BYTE FILLED IN
 8020 INY
 8030 BCC WS...8
 8040 BCS .15 ...3 CYCLE NOP
 8050 .15 BCS WS..17 ...ALWAYS
 8060 *---WRITE BYTE AT BUFFER.00---------------------------
 8070 WS..16 .DA #$AD,BYTE.AT.BUF00 4 CYCLES: LDA BYTE.AT.BUF00
 8080 STA DRV.Q6H,X
 8090 LDA DRV.Q6L,X
 8100 PHA
 8110 PLA
 8120 PHA
 8130 PLA
 8140 WS..17 LDX LAST.BYTE
 8150 LDA BIT.PAIR.TABLE+3,X
 8160 WS..18 LDX #MODIFIER
 8170 STA DRV.Q6H,X
 8180 LDA DRV.Q6L,X
 8190 LDY #0
 8200 PHA
 8210 PLA
 8220 *---WRITE DATA TRAILER: $DE AA EB FF----------
 8230 NOP
 8240 NOP
 8250 .19 LDA DATA.TRAILER,Y
 8260 JSR WRITE3
 8270 INY
 8280 CPY #4
 8290 BNE .19
 8300 CLC SIGNAL NO ERROR
 8310 WS.RET LDA DRV.Q7L,X DRIVE TO SAFE MODE
 8320 LDA DRV.Q6L,X
 8330 RTS
 8340 *--------------------------------
 8350 WRITE1 CLC
 8360 WRITE2 PHA
 8370 PLA
 8380 WRITE3 STA DRV.Q6H,X
 8390 ORA DRV.Q6L,X
 8400 RTS
 8410 *--------------------------------
 8420 PRE.NYBBLE
 8430 LDA RWB.BUFFER PLUG IN ADDRESS TO LOOP BELOW
 8440 LDY RWB.BUFFER+1
 8450 CLC
 8460 ADC #2
 8470 BCC .1
 8480 INY
 8490 .1 STA PN...6+1
 8500 STY PN...6+2
 8510 SEC

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 18 of 168

 8520 SBC #$56
 8530 BCS .2
 8540 DEY
 8550 .2 STA PN...5+1
 8560 STY PN...5+2
 8570 SEC
 8580 SBC #$56
 8590 BCS .3
 8600 DEY
 8610 .3 STA PN...4+1
 8620 STY PN...4+2
 8630 *---PACK THE LOWER TWO BITS INTO TBUF-------------
 8640 LDY #170
 8650 PN...4 LDA BUFF.BASE-170,Y ADDRESS FILLED IN
 8660 AND #3
 8670 TAX
 8680 LDA BIT.PAIR.RIGHT,X
 8690 PHA
 8700 PN...5 LDA BUFF.BASE-84,Y
 8710 AND #3
 8720 TAX
 8730 PLA
 8740 ORA BIT.PAIR.MIDDLE,X
 8750 PHA
 8760 PN...6 LDA BUFF.BASE+2,Y
 8770 AND #3
 8780 TAX
 8790 PLA
 8800 ORA BIT.PAIR.LEFT,X
 8810 PHA
 8820 TYA
 8830 EOR #$FF
 8840 TAX
 8850 PLA
 8860 STA TBUF,X
 8870 INY
 8880 BNE PN...4
 8890 *---DETERMINE BUFFER BOUNDARY CONDITIONS----------
 8900 *---AND SETUP WRITE.SECTOR ACCORDINGLY------------
 8910 LDY RWB.BUFFER
 8920 DEY
 8930 STY INDEX.OF.LAST.BYTE
 8940 LDA RWB.BUFFER
 8950 STA WS...5-1
 8960 BEQ .7
 8970 EOR #$FF
 8980 TAY
 8990 LDA (RWB.BUFFER),Y
 9000 INY
 9010 EOR (RWB.BUFFER),Y
 9020 AND #$FC
 9030 TAX
 9040 LDA BIT.PAIR.TABLE+3,X
 9050 .7 STA BYTE.AT.BUF00 =0 IF BUFFER NOT SPLIT
 9060 BEQ .9
 9070 LDA INDEX.OF.LAST.BYTE

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 19 of 168

 9080 LSR
 9090 LDA (RWB.BUFFER),Y
 9100 BCC .8
 9110 INY
 9120 EOR (RWB.BUFFER),Y
 9130 .8 STA BYTE.AT.BUF01
 9140 .9 LDY #$FF
 9150 LDA (RWB.BUFFER),Y
 9160 AND #$FC
 9170 STA LAST.BYTE
 9180 *---INSTALL BUFFER ADDRESSES IN WRITE.SECTOR------
 9190 LDY RWB.BUFFER+1
 9200 STY WS...5+2
 9210 STY WS...7+2
 9220 INY
 9230 STY WS...8+2
 9240 STY WS..10+2
 9250 STY WS..11+2
 9260 STY WS..14+2
 9270 *---INSTALL SLOT*16 IN WRITE.SECTOR---------------
 9280 LDX SLOT.X16
 9290 STX WS...6+1
 9300 STX WS...9+1
 9310 STX WS..13+1
 9320 STX WS..18+1
 9330 RTS
 9340 *--------------------------------
 9350 WAIT.FOR.OLD.MOTOR.TO.STOP
 9360 EOR OLD.SLOT SAME SLOT AS BEFORE?
 9370 ASL (IGNORE DRIVE)
 9380 BEQ .2 ...YES
 9390 LDA #1 LONG MOTOR.TIME
 9400 STA MOTOR.TIME+1 (COUNTS BACKWARDS)
 9410 .1 LDA OLD.SLOT
 9420 AND #$70
 9430 TAX
 9440 BEQ .2 ...NO PREVIOUS MOTOR RUNNING
 9450 JSR CHECK.IF.MOTOR.RUNNING.X
 9460 BEQ .2 ...NOT RUNNING YET
 9470 LDA #1 DELAY ANOTHER 100 USECS
 9480 JSR DELAY.100
 9490 LDA MOTOR.TIME+1
 9500 BNE .1 KEEP WAITING
 9510 .2 RTS
 9520 *--------------------------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 20 of 168

ProDOS and Clock Drivers, with a Commented Listing of ProDOS $F142-$F1BE

Bob Sander-Cederlof

November 1983

ProDOS is a new operating system which Apple expects to release to the public during
the first quarter of 1984. I am told that new computers and disk drives will be
shipped with ProDOS rather than DOS 3.3. Version 1.0 is already available to licensed
developers (I have it).

Apple has released massive amounts of documentation to licensed developers, and has
even been offering a full day class at $225 per seat in various cities around the
country. I attended the Dallas class on October 21st. Even with all the help they are
giving, there are still a lot of unclear details that can only be illuminated by
well-commented assembly listings of the actual ProDOS code. Apple will never publish
these, so we will do it ourselves.

My first serious foray into ProDOS began at the request of Dan Pote, Applied
Engineering. Dan wanted me to modify the firmware of his Timemaster clock card so
that it automatically had full compatibility with ProDOS. Dan wanted all programs,
even protected ones, which boot under ProDOS, to be able to read the date and time
from his card. Also, he wanted ProDOS to time/date stamp the files in the directory
with his card, just as it does with Thunderclock. (No small task, it turned out.)

ProDOS, when booting, searches the slots for a Thunderclock. If it finds one, it
marks a bit in the machine ID byte (MACHID, bit 0 of $BF98 = 1); it plugs two bytes
at $F14D and F150 with $CN, where N is the slot number; and it stores a JMP opcode
($4C) at $BF06.

$BF06 is a standard vector to whatever clock routine is installed. If no Thunderclock
was found, an RTS opcode will be stored there.

The ProDOS boot slot search looks for these Thunderclock ID bytes:

 $CN00 = $08
 $CN02 = $28
 $CN04 = $58
 $CN08 = $70

After booting, ProDOS loads and executes the program called STARTUP. The standard
STARTUP program searches the slots for various cards and displays a list of what it
finds. Unfortunately this list seldom agrees with the true configuration in any of my
computers. For one thing, STARTUP examines different bytes than the boot search does.
In looking for a clock card, STARTUP wants:

 $CN00 = $08
 $CN01 = $78
 $CN02 = $28

If you do not have a Thunderclock, but do have some other clock, you have several
options. What I did for Dan was change the firmware of Timemaster so that it emulates
Thunderclock. ProDOS is convinced it has a Thunderclock, but you are saved the extra
expense, and you gain extra features.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 21 of 168

Another approach is to write a program which installs your own clock driver inside
ProDOS. Mike Owen, of Austin, Texas, did this for Dan. After ProDOS boots it loads
the first type SYS file it can find in the directory whose name ends with ".SYSTEM".
Normally this is "BASIC.SYSTEM", which then proceeds to execute STARTUP. However, you
can set up your disk with CLOCK.SYSTEM before BASIC.SYSTEM in the directory.

Write CLOCK.SYSTEM so that it begins at $2000, because all type SYS files load there.
The program should mark the clock ID bit in MACHID, punch a JMP opcode at $BF06, and
look at the address in $BF07,BF08. That address is the beginning of the clock driver
inside the language card. Right now that address is $F142, but it could change.

Your program should write enable the language card by two "LDA $C081" instructions in
a row, and then copy your clock driver into the space starting at that address. You
can use up to 124 bytes. If your driver has references to the clock slot, be sure to
modify them to the actual slot you are using. If your driver has internal references,
be sure to modify them to point to the actual addresses inside the new physical
location.

It is standard practice in peripheral firmware to use the following code to find out
which slot the card is in:

 JSR $FF58 A Guaranteed $60 (RTS opcode)
 TSX Stack pointer
 LDA $100,X Get $CN off stack

Many cards also use "BIT $FF58" as a means for setting the V-bit in the status
register. BE AWARE THAT ProDOS DOES NOT HAVE $60 AT $FF58 in the language card!!!!

The Thunderclock has two entries, at $CN08 and $CN0B, which assume that $CN is
already in the X-register. $CN0B allows setting the clock mode, and $CN08 reads the
clock in the current mode. The ProDOS driver calls on these two entries, as the
following listing shows.

ProDOS maintains a full page at $BF00 called the System Global Page. The definition
of this page should not change, ever. They say. Locations $BF90-BF93 contain the
current date and time in a packed format. A system call will read the clock, if a
driver is installed, and format the year-month-day-hour-minute into these four bytes.

Now here is a listing of the current Thunderclock driver, as labelled and commented
by me.

 1000 *SAVE S.PRODOS $F142...$F1BE
 1010 *--------------------------------
 1020 * IF THE PRODOS BOOT RECOGNIZES A THUNDERCLOCK,
 1030 * A "JMP $F142" IS INSTALLED AT $BF06 AND
 1040 * THE SLOT ADDRESS IS PATCHED INTO THE FOLLOWING
 1050 * CODE AT SLOT.A AND SLOT.B BELOW.
 1060 *--------------------------------
 1070 DATE .EQ $BF90 $BF91 = YYYYYYYM
 1080 * $BF90 = MMMDDDDD
 1090 TIME .EQ $BF92 $BF93 = 000HHHHH
 1100 * $BF92 = 00MMMMMM
 1110 MODE .EQ $5F8-$C0 THUNDERCLOCK MODE IN SCREEN HOLE
 1120 *--------------------------------
 1130 .OR $F142

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 22 of 168

 1140 .TA $800
 1150 *--------------------------------
 1160 PRODOS.THUNDERCLOCK.DRIVER
 1170 LDX SLOT.B $CN
 1180 LDA MODE,X SAVE CURRENT THUNDERCLOCK MODE
 1190 PHA
 1200 LDA #$A3 SEND "#" TO THUNDERCLOCK TO
 1210 JSR $C20B SELECT INTEGER MODE
 1220 SLOT.A .EQ *-1
 1230 *--------------------------------
 1240 * READ TIME & DATE INTO $200...$211 IN FORMAT:
 1250 *--------------------------------
 1260 JSR $C208
 1270 SLOT.B .EQ *-1
 1280 *--------------------------------
 1290 * CONVERT ASCII VALUES TO BINARY
 1300 * $3E -- MINUTE
 1310 * $3D -- HOUR
 1320 * $3C -- DAY OF MONTH
 1330 * $3B -- DAY OF WEEK
 1340 * $3A -- MONTH
 1350 *--------------------------------
 1360 CLC
 1370 LDX #4
 1380 LDY #12 POINT AT MINUTE
 1390 .1 LDA $200,Y TEN'S DIGIT
 1400 AND #$07 IGNORE TOP BIT
 1410 STA $3A MULTIPLY DIGIT BY TEN
 1420 ASL *2
 1430 ASL *4
 1440 ADC $3A *5
 1450 ASL *10
 1460 ADC $201,Y ADD UNIT'S DIGIT
 1470 SEC
 1480 SBC #$B0 SUBTRACT ASCII ZERO
 1490 STA $3A,X STORE VALUE
 1500 DEY BACK UP TO PREVIOUS FIELD
 1510 DEY
 1520 DEY
 1530 DEX BACK UP TO PREVIOUS VALUE
 1540 BPL .1 ...UNTIL ALL 5 FIELDS CONVERTED
 1550 *--------------------------------
 1560 * PACK MONTH AND DAY OF MONTH,
 1570 *--------------------------------
 1580 TAY MONTH (1...12)
 1590 LSR 00000ABC--D
 1600 ROR D00000AB--C
 1610 ROR CD00000A--B
 1620 ROR BCD00000--A
 1630 ORA $3C MERGE DAY OF MONTH
 1640 STA DATE SAVE PACKED DAY AND MONTH
 1650 PHP SAVE TOP BIT OF MONTH
 1660 *--------------------------------
 1670 * CONVERT MONTH, DAY OF MONTH,
 1680 * AND DAY OF WEEK INTO YEAR.
 1690 *--------------------------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 23 of 168

 1700 AND #$1F ISOLATE DAY OF MONTH (1...31)
 1710 * CARRY SET FOR MONTHS 8...12
 1720 ADC YEAR.DAY,Y COMPUTE DAY OF YEAR
 1730 BCC .2
 1740 ADC #3 ADJUST REMAINDER FOR YEARDAY > 255
 1750 .2 SEC GET REMAINDER MODULO 7
 1760 .3 SBC #7
 1770 BCS .3 ...UNTIL ALL 7'S REMOVED
 1780 ADC #7 RESTORE TO POSITIVE VALUE
 1790 SBC $3B SUBTRACT KNOWN DAY OF WEEK
 1800 BCS .4 NO BORROW
 1810 ADC #7 BORROWED, SO ADD 7 BACK
 1820 .4 TAY ADJUSTED DAY OW WEEK AS INDEX
 1830 LDA YRTBL,Y GET YEAR (82...87)
 1840 PLP GET HIGH BIT OF MONTH IN CARRY
 1850 ROL FORM YYYYYYYM
 1860 STA DATE+1
 1870 LDA $3D GET HOUR
 1880 STA TIME+1
 1890 LDA $3E GET MINUTE
 1900 STA TIME
 1910 PLA RESTORE THUNDERCLOCK MODE
 1920 LDX SLOT.B GET $CN FOR INDEX
 1930 STA MODE,X
 1940 RTS
 1950 *--------------------------------
 1960 YEAR.DAY .EQ *-1 OFFSET BECAUSE INDEX 1...12
 1970 .DA #0,#31,#59,#90 JAN,FEB,MAR,APR
 1980 .DA #120,#151,#181,#211 MAY,JUN,JUL,AUG
 1990 .DA #242,#20,#51,#81 SEP,OCT,NOV,DEC
 2000 *--------------------------------
 2010 YRTBL .DA #84,#84,#83,#82,#87,#86,#85
 2020 *--------------------------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 24 of 168

Commented Listing of ProDOS -- $F90C-F995, $FD00-FE9A, $FEBE-FFFF

December 1983

Last month I printed the commented listing of the disk reading subroutines. This
month's selection covers disk writing, track positioning, and interrupt handling.
Together the two articles cover all the code between $F800 and $FFFF.

Several callers have wondered if this is all there is to ProDOS. No! It is only a
small piece. In my opinion, this is the place to start in understanding ProDOS's
features: A faster way of getting information to and from standard floppies. But
remember that ProDOS also supports the ProFILE hard disk, and a RAM disk in the
extended Apple //e memory.

Further, ProDOS has a file structure exactly like Apple /// SOS, with a hierarchical
directory and file sizes up to 16 megabytes.

Further, ProDOS includes support for a clock/calendar card, 80-columns with Smarterm
or //e, and interrupts.

ProDOS uses or reserves all but 255 bytes of the 16384 bytes in the language card
area (both $D000-DFFF banks and all #E000-FFFF). The 255 bytes not reserved are from
$D001 through $D0FF in one of the $D000 banks. The byte at $D000 is reserved, because
ProDOS uses it to distinguish which $D000 bank is switched on when an interrupt
occurs. The space at $BF00-BFFF is used by ProDOS for system linkages and variables
(called the System Global Page).

In addition, if you are using Applesoft, ProDOS uses memory from $9600-BEFF. This
space does not include any file buffers. When you OPEN files, buffers are allocated
as needed. CLOSEing automatically de-allocates buffers. Each buffer is 1024 bytes
long. As you can see, with ProDOS in place your Applesoft program has less room than
ever.

Track Seeking: $F90C-F995

The SEEK.TRACK subroutine begins at $F90C. The very first instruction multiplies the
track number by two, converting ProDOS logical track number to a physical track
number. If you want to access a "half-track" position, you could either store a NOP
opcode at $F90C, or enter the subroutine at $F90D.

A table is maintained of the current track position for each of up to 12 drives. I
call it the OLD.TRACK.TABLE. The subroutine GET.SSSD.IN.X forms an index into
OLD.TRACK.TABLE from slot# * 2 + drive#. There are no entries in the table for drives
in slots 0 or 1, which is fine with me. ProDOS uses these slots as pseudo slots for
the RAM-based pseudo-disk and for ProFILE, if I remember correctly.

The code in SEEK.TRACK.ABSOLUTE is similar but not identical to code in DOS 3.3. The
differences do not seem to be significant.

Disk Writing: $FD00-FE9A

The overall process of writing a sector is handled by code in RWTS, which was listed
last month. After the desired track is found, RWTS calls PRE.NYBBLE to build a block
of 86 bytes containing the low-order two bits from each byte in the caller's buffer.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 25 of 168

PRE.NYBBLE also stores a number of buffer addresses and slot*16 values inside the
WRITE.SECTOR subroutine. Next RWTS calls READ.ADDRESS to find the sector, and then
WRITE.SECTOR to put the data out.

WRITE.SECTOR is the real workhorse. And it is very critically timed. Once the write
head in your drive is enabled, every machine cycle is closely counted until the last
byte is written. First, five sync bytes are written (ten bits each, 1111111100).
These are written by putting $FF in the write register at 40 cycle intervals.
Following the sync bytes W.S writes a data header of D5 AA AD.

Second, the 86-byte block which PRE.NYBBLE built is written, followed by the coded
form of the rest of your buffer. WRITE.SECTOR picks up bytes directly from your
buffer, keeps a running checksum, encodes the high-order six bits into an 8-bit
value, and writes it on the disk...one byte every 32 cycles, exactly. Since your
buffer can be any arbitrary place in memory, and since the 6502 adds cycles for
indexed instructions that cross page boundaries, WRITE.SECTOR splits the buffer in
parts before and after a page boundary. All the overhead for the split is handled in
PRE.NYBBLE, before the timed operations begin.

Finally, the checksum and a data trailer of DE AA EB FF are written.

Empty Space: $FEBE-FF9A

This space had no code in it. Nearly a whole page here.

Interrupt & RESET Handling: $FF9B-FFFF

If the RAM card is switched on when an interrupt or RESET occurs, the vectors at
$FFFA-FFFF will be those ProDOS installed rather than the ones permanently coded in
ROM. It turns out the non-maskable interrupt (NMI) is still vectored down into page
3. But the more interesting IRQ interrupt is now vectored to code at $FF9B inside
ProDOS.

The ProDOS IRQ handler performs two functions beyond those built-in to the monitor
ROM. First, the contents of location $45 are saved so that the monitor can safely
clobber it. Second, a flag is set indicating which $D000 bank is currently switched
on, so that it can be restored after the interrupt handler is finished. (The second
step is omitted if the interrupt was caused by a BRK opcode.)

If the IRQ was not due to a BRK opcode, a fake "RTI" vector is pushed on the stack.
This consists of a return address of $BF50 and a status of $04. The status keeps IRQ
interrupts disabled, and $BF50 is a short routine which turns the ProDOS memory back
on and jumps up to INT.SPLICE at $FFD8:

 BF50- 8D 8B C0 STA $C08B
 BF53- 4C D8 FF JMP $FFD8

Of course, before coming back via the RTI, ProDOS tries to USE the interrupt. If you
have set up one or more interrupt vectors with the ProDOS system call, they will be
called.

INT.SPLICE restores the contents of $45 and switches the main $D000 bank on. Then it
jumps back to $BFD3 with the information about which $D000 bank really should be on.
$BFD3 turns on the other bank if necessary, and returns to the point at which the
interrupt occured.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 26 of 168

The instruction at $FFC8 is interesting. STA $C082 turns on the monitor ROM, so the
next instruction to be executed is at $FFCB in ROM. This is an RTS opcode, so the
address on the stack at that point is used. There are two possible values: $FA41 if
an IRQ interrupt is being processed, or $FA61 if a RESET is being processed. This
means the RTS will effectively branch to $FA42 or $FA62.

Uh Oh! At this point you had better hope that you are not running with the original
Apple monitor ROM. The Apple II Plus ROM (called Autostart Monitor) and the Apple //e
ROM are fine. $FA42 is the second instruction of the IRQ code, and $FA62 is the
standard RESET handler. But the original ROM, like I have in my serial 219 machine,
has entirely different code there.

I have an $FF at $FA42, followed by code for the monitor S (single step) command. And
$FA62 is right in the middle of the S command. There is no telling what might happen,
short of actually trying it out. No thanks. Just remember that RESET, BRK, and IRQ
interrupts will not work correctly if they happen when the RAM area is switched on
and you have the old original monitor in ROM.

There is another small empty space from $FFE9 through $FFF9, 17 bytes.

Perhaps I should point out that the listings this month and last are from the latest
release of ProDOS, which may not be the final released version. However, I would
expect any differences in the regions I have covered so far to be slight.

[In this web edition I have included the entire code, instead of just the pieces not
printed in the November 1983 issue.]

 1000 .TI 76,PRODOS F800-FFFF.....COMMENTED BY RBS-C 11-8-83............
 1010 *SAVE S.PRODOS F800-FFFF
 1020 *--------------------------------
 1030 RUNNING.SUM .EQ $3A
 1040 TBUF.0 .EQ $3A
 1050 BYTE.AT.BUF00 .EQ $3B
 1060 BYTE.AT.BUF01 .EQ $3C
 1070 LAST.BYTE .EQ $3D
 1080 SLOT.X16 .EQ $3E
 1090 INDEX.OF.LAST.BYTE .EQ $3F
 1100 *--------------------------------
 1110 RWB.COMMAND .EQ $42
 1120 RWB.SLOT .EQ $43 DSSSXXXX
 1130 RWB.BUFFER .EQ $44,45
 1140 RWB.BLOCK .EQ $46,47 0...279
 1150 *--------------------------------
 1160 BUFF.BASE .EQ $4700 DUMMY ADDRESS FOR ASSEMBLY ONLY
 1170 *--------------------------------
 1180 SAVE.LOC45 .EQ $BF56
 1190 SAVE.D000 .EQ $BF57
 1200 INTAREG .EQ $BF88
 1210 INTBANKID .EQ $BF8D
 1220 IRQXIT.3 .EQ $BFD3
 1230 *--------------------------------
 1240 DRV.PHASE .EQ $C080
 1250 DRV.MTROFF .EQ $C088
 1260 DRV.MTRON .EQ $C089
 1270 DRV.ENBL.0 .EQ $C08A
 1280 DRV.Q6L .EQ $C08C

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 27 of 168

 1290 DRV.Q6H .EQ $C08D
 1300 DRV.Q7L .EQ $C08E
 1310 DRV.Q7H .EQ $C08F
 1320 *--------------------------------
 1330 * <<<COMPUTED >>>
 1340 MODIFIER .EQ $60 <<<SLOT * 16>>>
 1350 *--------------------------------
 1360 .OR $F800
 1370 .TA $800
 1380 *--------------------------------
 1390 * READ/WRITE A BLOCK
 1400 *
 1410 * 1. ASSURE VALID BLOCK NUMBER (0...279)
 1420 * 2. CONVERT BLOCK NUMBER TO TRACK/SECTOR
 1430 * TRACK = INT(BLOCK/8)
 1440 * BLOCK SECTORS
 1450 * ----- ---------
 1460 * 0 0 AND 2
 1470 * 1 4 AND 6
 1480 * 2 8 AND 10
 1490 * 3 12 AND 14
 1500 * 4 1 AND 3
 1510 * 5 5 AND 7
 1520 * 6 9 AND 11
 1530 * 7 13 AND 15
 1540 * 3. CALL RWTS TWICE
 1550 * 4. RETURN WITH ERROR STATUS
 1560 *--------------------------------
 1570 RWB
 1580 LDA RWB.BLOCK BLOCK MUST BE 0...279
 1590 LDX RWB.BLOCK+1
 1600 STX RWTS.TRACK
 1610 BEQ .1 ...BLOCK # LESS THAN 256
 1620 DEX
 1630 BNE .5 ...BLOCK # MORE THAN 511
 1640 CMP #$18
 1650 BCS .5 ...BLOCK # MORE THAN 279
 1660 .1 LDY #5 SHIFT 5 BITS OF TRACK #
 1670 .2 ASL RWTS.TRACK A-REG
 1680 ROL RWTS.TRACK ---------- --------
 1690 DEY 00TTTTTT ABC00000
 1700 BNE .2
 1710 ASL TRANSFORM BLOCK # INTO SECTOR #
 1720 BCC .3 ABC00000 --> 0000BC0A
 1730 ORA #$10
 1740 .3 LSR
 1750 LSR
 1760 LSR
 1770 LSR
 1780 PHA
 1790 JSR RWTS R/W FIRST SECTOR OF BLOCK
 1800 PLA
 1810 BCS .4 ...ERROR
 1820 INC RWB.BUFFER+1
 1830 ADC #2
 1840 JSR RWTS R/W SECOND SECTOR OF BLOCK

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 28 of 168

 1850 DEC RWB.BUFFER+1
 1860 .4 LDA RWTS.ERROR
 1870 RTS
 1880 *---BLOCK NUMBER > 279-----------
 1890 .5 LDA #$27 I/O ERROR
 1900 SEC
 1910 RTS
 1920 *--------------------------------
 1930 * READ/WRITE A GIVEN SECTOR
 1940 *--------------------------------
 1950 RWTS
 1960 LDY #1 TRY SEEKING TWICE
 1970 STY SEEK.COUNT
 1980 STA RWTS.SECTOR
 1990 LDA RWB.SLOT
 2000 AND #$70 0SSS0000
 2010 STA SLOT.X16
 2020 JSR WAIT.FOR.OLD.MOTOR.TO.STOP
 2030 JSR CHECK.IF.MOTOR.RUNNING
 2040 PHP SAVE ANSWER (.NE. IF RUNNING)
 2050 LDA #$E8 MOTOR STARTING TIME
 2060 STA MOTOR.TIME+1 ONLY HI-BYTE NECESSARY
 2070 LDA RWB.SLOT SAME SLOT AND DRIVE?
 2080 CMP OLD.SLOT
 2090 STA OLD.SLOT
 2100 PHP SAVE ANSWER
 2110 ASL DRIVE # TO C-BIT
 2120 LDA DRV.MTRON,X START MOTOR
 2130 BCC .1 ...DRIVE 0
 2140 INX ...DRIVE 1
 2150 .1 LDA DRV.ENBL.0,X ENABLE DRIVE X
 2160 PLP SAME SLOT/DRIVE?
 2170 BEQ .3 ...YES
 2180 PLP DISCARD ANSWER ABOUT MOTOR GOING
 2190 LDY #7 DELAY 150-175 MILLISECS
 2200 .2 JSR DELAY.100 DELAY 25 MILLISECS
 2210 DEY
 2220 BNE .2
 2230 PHP SAY MOTOR NOT ALREADY GOING
 2240 .3 LDA RWB.COMMAND 0=TEST, 1=READ, 2=WRITE
 2250 BEQ .4 ...0, MERELY TEST
 2260 LDA RWTS.TRACK
 2270 JSR SEEK.TRACK
 2280 .4 PLP WAS MOTOR ALREADY GOING?
 2290 BNE .6 ...YES
 2300 .5 LDA #1 DELAY 100 USECS
 2310 JSR DELAY.100
 2320 LDA MOTOR.TIME+1
 2330 BMI .5 ...WAIT TILL IT OUGHT TO BE
 2340 JSR CHECK.IF.MOTOR.RUNNING
 2350 BEQ .14 ...NOT RUNNING YET, ERROR
 2360 .6 LDA RWB.COMMAND
 2370 BEQ .17 CHECK IF WRITE PROTECTED
 2380 LSR .CS. IF READ, .CC. IF WRITE
 2390 BCS .7 ...READ
 2400 JSR PRE.NYBBLE ...WRITE

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 29 of 168

 2410 .7 LDY #64 TRY 64 TIMES TO FIND THE SECTOR
 2420 STY SEARCH.COUNT
 2430 .8 LDX SLOT.X16
 2440 JSR READ.ADDRESS
 2450 BCC .10 ...FOUND IT
 2460 .9 DEC SEARCH.COUNT
 2470 BPL .8 ...KEEP LOOKING
 2480 LDA #$27 I/O ERROR CODE
 2490 DEC SEEK.COUNT ANY TRIES LEFT?
 2500 BNE .14 ...NO, I/O ERROR
 2510 LDA CURRENT.TRACK
 2520 PHA
 2530 ASL SLIGHT RE-CALIBRATION
 2540 ADC #$10
 2550 LDY #64 ANOTHER 64 TRIES
 2560 STY SEARCH.COUNT
 2570 BNE .11 ...ALWAYS
 2580 .10 LDY HDR.TRACK ACTUAL TRACK FOUND
 2590 CPY CURRENT.TRACK
 2600 BEQ .12 FOUND THE RIGHT ONE
 2610 LDA CURRENT.TRACK WRONG ONE, TRY AGAIN
 2620 PHA
 2630 TYA STARTING FROM TRACK FOUND
 2640 ASL
 2650 .11 JSR UPDATE.TRACK.TABLE
 2660 PLA
 2670 JSR SEEK.TRACK
 2680 BCC .8 ...ALWAYS
 2690 .12 LDA HDR.SECTOR
 2700 CMP RWTS.SECTOR
 2710 BNE .9
 2720 LDA RWB.COMMAND
 2730 LSR
 2740 BCC .15 ...WRITE
 2750 JSR READ.SECTOR ...READ
 2760 BCS .9 ...READ ERROR
 2770 .13 LDA #0 NO ERROR
 2780 .HS D0 "BNE"...NEVER, JUST SKIPS "SEC"
 2790 .14 SEC ERROR
 2800 STA RWTS.ERROR SAVE ERROR CODE
 2810 LDA DRV.MTROFF,X STOP MOTOR
 2820 RTS RETURN
 2830 *--------------------------------
 2840 .15 JSR WRITE.SECTOR
 2850 .16 BCC .13 ...NO ERROR
 2860 LDA #$2B WRITE PROTECTED ERROR CODE
 2870 BNE .14 ...ALWAYS
 2880 .17 LDX SLOT.X16 CHECK IF WRITE PROTECTED
 2890 LDA DRV.Q6H,X
 2900 LDA DRV.Q7L,X
 2910 ROL
 2920 LDA DRV.Q6L,X
 2930 JMP .16 GIVE ERROR IF PROTECTED
 2940 *--------------------------------
 2950 SEEK.TRACK
 2960 ASL GET PHYSICAL TRACK #

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 30 of 168

 2970 STA HDR.TRACK ...SAVE HERE
 2980 JSR CLEAR.PHASES (CARRY WAS CLEAR)
 2990 JSR GET.SSSD.IN.X
 3000 LDA OLD.TRACK.TABLE,X
 3010 STA CURRENT.TRACK
 3020 LDA HDR.TRACK
 3030 STA OLD.TRACK.TABLE,X
 3040 JSR SEEK.TRACK.ABSOLUTE
 3050 *--------------------------------
 3060 CLEAR.PHASES
 3070 LDY #3
 3080 .1 TYA
 3090 JSR PHASE.COMMANDER
 3100 DEY
 3110 BPL .1
 3120 LSR CURRENT.TRACK BACK TO LOGICAL TRACK #
 3130 CLC SIGNAL NO ERROR
 3140 RTS
 3150 *--------------------------------
 3160 SEEK.TRACK.ABSOLUTE
 3170 STA TARGET.TRACK SAVE ACTUAL TRACK #
 3180 CMP CURRENT.TRACK ALREADY THERE?
 3190 BEQ .7 ...YES
 3200 LDA #0
 3210 STA STEP.CNT # STEPS SO FAR
 3220 .1 LDA CURRENT.TRACK
 3230 STA CURRENT.TRACK.OLD
 3240 SEC
 3250 SBC TARGET.TRACK
 3260 BEQ .6 ...WE HAVE ARRIVED
 3270 BCS .2 CURRENT > DESIRED
 3280 EOR #$FF CURRENT < DESIRED
 3290 INC CURRENT.TRACK
 3300 BCC .3 ...ALWAYS
 3310 .2 ADC #$FE .CS., SO A=A-1
 3320 DEC CURRENT.TRACK
 3330 .3 CMP STEP.CNT GET MINIMUM OF:
 3340 BCC .4 1. # OF TRACKS TO MOVE LESS 1
 3350 LDA STEP.CNT 2. # OF STEPS SO FAR
 3360 .4 CMP #9 3. EIGHT
 3370 BCS .5
 3380 TAY
 3390 SEC TURN NEW PHASE ON
 3400 .5 JSR .7
 3410 LDA ONTBL,Y DELAY
 3420 JSR DELAY.100
 3430 LDA CURRENT.TRACK.OLD
 3440 CLC TURN OLD PHASE OFF
 3450 JSR PHASE.COMMANDER
 3460 LDA OFFTBL,Y DELAY
 3470 JSR DELAY.100
 3480 INC STEP.CNT # OF STEPS SO FAR
 3490 BNE .1 ...ALWAYS
 3500 .6 JSR DELAY.100
 3510 CLC TURN PHASE OFF
 3520 .7 LDA CURRENT.TRACK

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 31 of 168

 3530 *--------------------------------
 3540 * (A) = TRACK #
 3550 * .CC. THEN PHASE OFF
 3560 * .CS. THEN PHASE ON
 3570 *--------------------------------
 3580 PHASE.COMMANDER
 3590 AND #3 ONLY KEEP LOWER TWO BITS
 3600 ROL 00000XXC
 3610 ORA SLOT.X16 0SSS0XXC
 3620 TAX
 3630 LDA DRV.PHASE,X
 3640 LDX SLOT.X16 RESTORE SLOT*16
 3650 RTS
 3660 *--------------------------------
 3670 * VALUE READ FROM DISK IS INDEX INTO THIS TABLE
 3680 * TABLE ENTRY GIVES TOP 6 BITS OF ACTUAL DATA
 3690 *
 3700 * OTHER DATA TABLES ARE IMBEDDED IN THE UNUSED
 3710 * PORTIONS OF THE BYTE.TABLE
 3720 *--------------------------------
 3730 BYTE.TABLE .EQ *-$96
 3740 .HS 0004FFFF080CFF101418
 3750 BIT.PAIR.LEFT
 3760 .HS 008040C0
 3770 .HS FFFF1C20FFFFFF24282C
 3780 .HS 3034FFFF383C4044
 3790 .HS 484CFF5054585C606468
 3800 BIT.PAIR.MIDDLE
 3810 .HS 00201030
 3820 DATA.TRAILER
 3830 .HS DEAAEBFF
 3840 .HS FFFFFF6CFF70
 3850 .HS 7478FFFFFF7CFFFF
 3860 .HS 8084FF888C9094989CA0
 3870 BIT.PAIR.RIGHT
 3880 .HS 0008040C
 3890 .HS FFA4A8ACFFB0B4B8BCC0
 3900 .HS C4C8FFFFCCD0D4D8
 3910 .HS DCE0FFE4E8ECF0F4
 3920 .HS F8FC
 3930 *--------------------------------
 3940 BIT.PAIR.TABLE
 3950 .HS 00000096
 3960 .HS 02000097
 3970 .HS 0100009A
 3980 .HS 0300009B
 3990 .HS 0002009D
 4000 .HS 0202009E
 4010 .HS 0102009F
 4020 .HS 030200A6
 4030 .HS 000100A7
 4040 .HS 020100AB
 4050 .HS 010100AC
 4060 .HS 030100AD
 4070 .HS 000300AE
 4080 .HS 020300AF

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 32 of 168

 4090 .HS 010300B2
 4100 .HS 030300B3
 4110 .HS 000002B4
 4120 .HS 020002B5
 4130 .HS 010002B6
 4140 .HS 030002B7
 4150 .HS 000202B9
 4160 .HS 020202BA
 4170 .HS 010202BB
 4180 .HS 030202BC
 4190 .HS 000102BD
 4200 .HS 020102BE
 4210 .HS 010102BF
 4220 .HS 030102CB
 4230 .HS 000302CD
 4240 .HS 020302CE
 4250 .HS 010302CF
 4260 .HS 030302D3
 4270 .HS 000001D6
 4280 .HS 020001D7
 4290 .HS 010001D9
 4300 .HS 030001DA
 4310 .HS 000201DB
 4320 .HS 020201DC
 4330 .HS 010201DD
 4340 .HS 030201DE
 4350 .HS 000101DF
 4360 .HS 020101E5
 4370 .HS 010101E6
 4380 .HS 030101E7
 4390 .HS 000301E9
 4400 .HS 020301EA
 4410 .HS 010301EB
 4420 .HS 030301EC
 4430 .HS 000003ED
 4440 .HS 020003EE
 4450 .HS 010003EF
 4460 .HS 030003F2
 4470 .HS 000203F3
 4480 .HS 020203F4
 4490 .HS 010203F5
 4500 .HS 030203F6
 4510 .HS 000103F7
 4520 .HS 020103F9
 4530 .HS 010103FA
 4540 .HS 030103FB
 4550 .HS 000303FC
 4560 .HS 020303FD
 4570 .HS 010303FE
 4580 .HS 030303FF
 4590 *--------------------------------
 4600 TBUF .BS 86
 4610 *--------------------------------
 4620 RWTS.TRACK .HS 07
 4630 RWTS.SECTOR .HS 0F
 4640 RWTS.ERROR .HS 00

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 33 of 168

 4650 OLD.SLOT .HS 60
 4660 CURRENT.TRACK .HS 07
 4670 .HS 00
 4680 *--------------------------------
 4690 OLD.TRACK.TABLE .EQ *-4
 4700 .HS 0000 SLOT 2, DRIVE 0--DRIVE 1
 4710 .HS 0000 SLOT 3
 4720 .HS 0000 SLOT 4
 4730 .HS 0000 SLOT 5
 4740 .HS 0E00 SLOT 6
 4750 .HS 0000 SLOT 7
 4760 *--------------------------------
 4770 .HS 00
 4780 *--------------------------------
 4790 SEARCH.COUNT .BS 1
 4800 SEEK.COUNT .BS 1
 4810 STEP.CNT .EQ *
 4820 SEEK.D5.CNT .EQ *
 4830 X1X1X1X1 .BS 1 ALSO STEP.CNT & SEEK.D5.CNT
 4840 CHECK.SUM .BS 1
 4850 HDR.CHKSUM .BS 1
 4860 HDR.SECTOR .BS 1
 4870 HDR.TRACK .EQ *
 4880 MOTOR.TIME .BS 2 ALSO HDR.TRACK & HDR.VOLUME
 4890 CURRENT.TRACK.OLD .BS 1
 4900 TARGET.TRACK .BS 1
 4910 *--------------------------------
 4920 * DELAY TIMES FOR ACCELERATION & DECELERATION
 4930 * OF TRACK STEPPING MOTOR
 4940 *--------------------------------
 4950 ONTBL .HS 01302824201E1D1C1C
 4960 OFFTBL .HS 702C26221F1E1D1C1C
 4970 *--------------------------------
 4980 * DELAY ABOUT 100*A MICROSECONDS
 4990 * RUN DOWN MOTOR.TIME WHILE DELAYING
 5000 *--------------------------------
 5010 DELAY.100
 5020 .1 LDX #17
 5030 .2 DEX
 5040 BNE .2
 5050 INC MOTOR.TIME
 5060 BNE .3
 5070 INC MOTOR.TIME+1
 5080 .3 SEC
 5090 SBC #1
 5100 BNE .1
 5110 RTS
 5120 *--------------------------------
 5130 READ.ADDRESS
 5140 LDY #$FC TRY 772 TIMES TO FIND $D5
 5150 STY SEEK.D5.CNT (FROM $FCFC TO $10000)
 5160 .1 INY
 5170 BNE .2 ...KEEP TRYING
 5180 INC SEEK.D5.CNT
 5190 BEQ .11 ...THAT IS ENUF!
 5200 .2 LDA DRV.Q6L,X GET NEXT BYTE

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 34 of 168

 5210 BPL .2
 5220 .3 CMP #$D5 IS IT $D5?
 5230 BNE .1 ...NO, TRY AGAIN
 5240 NOP ...YES, DELAY
 5250 .4 LDA DRV.Q6L,X GET NEXT BYTE
 5260 BPL .4
 5270 CMP #$AA NOW NEED $AA AND $96
 5280 BNE .3 ...NO, BACK TO $D5 SEARCH
 5290 LDY #3 (READ 3 BYTES LATER)
 5300 .5 LDA DRV.Q6L,X GET NEXT BYTE
 5310 BPL .5
 5320 CMP #$96 BETTER BE...
 5330 BNE .3 ...IT IS NOT
 5340 SEI ...NO INTERRUPTS NOW
 5350 LDA #0 START CHECK SUM
 5360 .6 STA CHECK.SUM
 5370 .7 LDA DRV.Q6L,X GET NEXT BYTE
 5380 BPL .7 1X1X1X1X
 5390 ROL X1X1X1X1
 5400 STA X1X1X1X1
 5410 .8 LDA DRV.Q6L,X GET NEXT BYTE
 5420 BPL .8 1Y1Y1Y1Y
 5430 AND X1X1X1X1 XYXYXYXY
 5440 STA HDR.CHKSUM,Y
 5450 EOR CHECK.SUM
 5460 DEY
 5470 BPL .6
 5480 TAY CHECK CHECKSUM
 5490 BNE .11 NON-ZERO, ERROR
 5500 .9 LDA DRV.Q6L,X GET NEXT BYTE
 5510 BPL .9
 5520 CMP #$DE TRAILER EXPECTED $DE.AA.EB
 5530 BNE .11 NO, ERROR
 5540 NOP
 5550 .10 LDA DRV.Q6L,X
 5560 BPL .10
 5570 CMP #$AA
 5580 BNE .11 NO, ERROR
 5590 CLC
 5600 RTS
 5610 .11 SEC
 5620 RTS
 5630 *--------------------------------
 5640 READ.SECTOR
 5650 TXA SLOT*16 ($60 FOR SLOT 6)
 5660 ORA #$8C BUILD Q6L ADDRESS FOR SLOT
 5670 STA .9+1 STORE INTO READ-DISK OPS
 5680 STA .12+1
 5690 STA .13+1
 5700 STA .15+1
 5710 STA .18+1
 5720 LDA RWB.BUFFER PLUG CALLER'S BUFFER
 5730 LDY RWB.BUFFER+1 ADDRESS INTO STORE'S
 5740 STA .17+1 PNTR FOR LAST THIRD
 5750 STY .17+2
 5760 SEC PNTR FOR MIDDLE THIRD

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 35 of 168

 5770 SBC #84
 5780 BCS .1
 5790 DEY
 5800 .1 STA .14+1
 5810 STY .14+2
 5820 SEC PNTR FOR BOTTOM THIRD
 5830 SBC #87
 5840 BCS .2
 5850 DEY
 5860 .2 STA .11+1
 5870 STY .11+2
 5880 *---FIND $D5.AA.AD HEADER--------
 5890 LDY #32 MUST FIND $D5 WITHIN 32 BYTES
 5900 .3 DEY
 5910 BEQ .10 ERROR RETURN
 5920 .4 LDA DRV.Q6L,X
 5930 BPL .4
 5940 .5 EOR #$D5
 5950 BNE .3
 5960 NOP
 5970 .6 LDA DRV.Q6L,X
 5980 BPL .6
 5990 CMP #$AA
 6000 BNE .5
 6010 NOP
 6020 .7 LDA DRV.Q6L,X
 6030 BPL .7
 6040 CMP #$AD
 6050 BNE .5
 6060 *---READ 86 BYTES INTO TBUF...TBUF+85----------
 6070 *---THESE ARE THE PACKED LOWER TWO BITS--------
 6080 *---FROM EACH BYTE OF THE CALLER'S BUFFER.-----
 6090 LDY #170
 6100 LDA #0 INIT RUNNING EOR-SUM
 6110 .8 STA RUNNING.SUM
 6120 .9 LDX DRV.Q6L+MODIFIER READ NEXT BYTE
 6130 BPL .9
 6140 LDA BYTE.TABLE,X DECODE DATA
 6150 STA TBUF-170,Y
 6160 EOR RUNNING.SUM
 6170 INY
 6180 BNE .8
 6190 *---READ NEXT 86 BYTES-------------------------
 6200 *---STORE 1ST 85 IN BUFFER...BUFFER+84---------
 6210 *---SAVE THE 86TH BYTE ON THE STACK------------
 6220 LDY #170
 6230 BNE .12 ...ALWAYS
 6240 *--
 6250 .10 SEC I/O ERROR EXIT
 6260 RTS
 6270 *--
 6280 .11 STA BUFF.BASE-171,Y
 6290 .12 LDX DRV.Q6L+MODIFIER READ NEXT BYTE
 6300 BPL .12
 6310 EOR BYTE.TABLE,X DECODE DATA
 6320 LDX TBUF-170,Y MERGE LOWER 2 BITS

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 36 of 168

 6330 EOR BIT.PAIR.TABLE,X
 6340 INY
 6350 BNE .11
 6360 PHA SAVE LAST BYTE (LATER BUFFER+85)
 6370 *---READ NEXT 86 BYTES-----------
 6380 *---STORE AT BUFFER+86...BUFFER+171------------
 6390 AND #$FC MASK FOR RUNNING EOR.SUM
 6400 LDY #170
 6410 .13 LDX DRV.Q6L+MODIFIER READ NEXT BYTE
 6420 BPL .13
 6430 EOR BYTE.TABLE,X DECODE DATA
 6440 LDX TBUF-170,Y MERGE LOWER 2 BITS
 6450 EOR BIT.PAIR.TABLE+1,X
 6460 .14 STA BUFF.BASE-84,Y
 6470 INY
 6480 BNE .13
 6490 *---READ NEXT 84 BYTES-------------------------
 6500 *---INTO BUFFER+172...BUFFER+255---------------
 6510 .15 LDX DRV.Q6L+MODIFIER READ NEXT BYTE
 6520 BPL .15
 6530 AND #$FC
 6540 LDY #172
 6550 .16 EOR BYTE.TABLE,X DECODE DATA
 6560 LDX TBUF-172,Y MERGE LOWER 2 BITS
 6570 EOR BIT.PAIR.TABLE+2,X
 6580 .17 STA BUFF.BASE,Y
 6590 .18 LDX DRV.Q6L+MODIFIER READ NEXT BYTE
 6600 BPL .18
 6610 INY
 6620 BNE .16
 6630 AND #$FC
 6640 *---END OF DATA------------------
 6650 EOR BYTE.TABLE,X DECODE DATA
 6660 BNE .20 ...BAD CHECKSUM
 6670 LDX SLOT.X16 CHECK FOR TRAILER $DE
 6680 .19 LDA DRV.Q6L,X
 6690 BPL .19
 6700 CMP #$DE
 6710 CLC
 6720 BEQ .21 ...GOOD READ!
 6730 .20 SEC ...SIGNAL BAD READ
 6740 .21 PLA STORE BYTE AT BUFFER+85
 6750 LDY #85
 6760 STA (RWB.BUFFER),Y
 6770 RTS
 6780 *--------------------------------
 6790 UPDATE.TRACK.TABLE
 6800 JSR GET.SSSD.IN.X
 6810 STA OLD.TRACK.TABLE,X
 6820 RTS
 6830 *--------------------------------
 6840 CHECK.IF.MOTOR.RUNNING
 6850 LDX SLOT.X16
 6860 CHECK.IF.MOTOR.RUNNING.X
 6870 LDY #0
 6880 .1 LDA DRV.Q6L,X READ CURRENT INPUT REGISTER

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 37 of 168

 6890 JSR .2 ...12 CYCLES...
 6900 PHA ...7 MORE CYCLES...
 6910 PLA
 6920 CMP DRV.Q6L,X BY NOW INPUT REGISTER
 6930 BNE .2 SHOULD HAVE CHANGED
 6940 LDA #$28 ERROR CODE: NO DEVICE CONNECTED
 6950 DEY BUT TRY 255 MORE TIMES
 6960 BNE .1 ...RETURN .NE. IF MOVING...
 6970 .2 RTS ...RETURN .EQ. IF NOT MOVING...
 6980 *--------------------------------
 6990 GET.SSSD.IN.X
 7000 PHA SAVE A-REG
 7010 LDA RWB.SLOT DSSSXXXX
 7020 LSR
 7030 LSR
 7040 LSR
 7050 LSR 0000DSSS
 7060 CMP #8 SET CARRY IF DRIVE 2
 7070 AND #7 00000SSS
 7080 ROL 0000SSSD
 7090 TAX INTO X-REG
 7100 PLA RESTORE A-REG
 7110 RTS
 7120 *--------------------------------
 7130 WRITE.SECTOR
 7140 SEC IN CASE WRITE-PROTECTED
 7150 LDA DRV.Q6H,X
 7160 LDA DRV.Q7L,X
 7170 BPL .1 ...NOT WRITE PROTECTED
 7180 JMP WS.RET ...PROTECTED, ERROR
 7190 *--------------------------------
 7200 .1 LDA TBUF
 7210 STA TBUF.0
 7220 *---WRITE 5 SYNC BYTES-----------
 7230 LDA #$FF
 7240 STA DRV.Q7H,X
 7250 ORA DRV.Q6L,X
 7260 LDY #4
 7270 NOP $FF AT 40-CYCLE INTERVALS LEAVES
 7280 PHA TWO ZERO-BITS AFTER EACH $FF
 7290 PLA
 7300 .2 PHA
 7310 PLA
 7320 JSR WRITE2
 7330 DEY
 7340 BNE .2
 7350 *---WRITE $D5 AA AD HEADER-------
 7360 LDA #$D5
 7370 JSR WRITE1
 7380 LDA #$AA
 7390 JSR WRITE1
 7400 LDA #$AD
 7410 JSR WRITE1
 7420 *---WRITE 86 BYTES FROM TBUF-------------------
 7430 *---BACKWARDS: TBUF+85...TBUF+1, TBUF.0------
 7440 TYA =0

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 38 of 168

 7450 LDY #86
 7460 BNE .4
 7470 .3 LDA TBUF,Y
 7480 .4 EOR TBUF-1,Y
 7490 TAX
 7500 LDA BIT.PAIR.TABLE+3,X
 7510 LDX SLOT.X16
 7520 STA DRV.Q6H,X
 7530 LDA DRV.Q6L,X
 7540 DEY
 7550 BNE .3
 7560 LDA TBUF.0
 7570 *---WRITE PORTION OF BUFFER------
 7580 *---UP TO A PAGE BOUNDARY--------
 7590 LDY #*-* FILLED IN WITH LO-BYTE OF BUFFER ADDRESS
 7600 WS...5 EOR BUFF.BASE,Y HI-BYTE FILLED IN
 7610 AND #$FC
 7620 TAX
 7630 LDA BIT.PAIR.TABLE+3,X
 7640 WS...6 LDX #MODIFIER
 7650 STA DRV.Q6H,X
 7660 LDA DRV.Q6L,X
 7670 WS...7 LDA BUFF.BASE,Y HI-BYTE FILLED IN
 7680 INY
 7690 BNE WS...5
 7700 *---BRANCH ACCORDING TO BUFFER BOUNDARY CONDITIONS-----
 7710 LDA BYTE.AT.BUF00
 7720 BEQ WS..17 ...BUFFER ALL IN ONE PAGE
 7730 LDA INDEX.OF.LAST.BYTE
 7740 BEQ WS..16 ...ONLY ONE BYTE IN NEXT PAGE
 7750 *---MORE THAN ONE BYTE IN NEXT PAGE--------------------
 7760 LSR ...DELAY TWO CYCLES
 7770 LDA BYTE.AT.BUF00 PRE.NYBBLE ALREADY ENCODED
 7780 STA DRV.Q6H,X THIS BYTE
 7790 LDA DRV.Q6L,X
 7800 LDA BYTE.AT.BUF01
 7810 NOP
 7820 INY
 7830 BCS WS..12
 7840 WS...8 EOR BUFF.BASE+256,Y HI-BYTE FILLED IN
 7850 AND #$FC
 7860 TAX
 7870 LDA BIT.PAIR.TABLE+3,X
 7880 WS...9 LDX #MODIFIER
 7890 STA DRV.Q6H,X
 7900 LDA DRV.Q6L,X
 7910 WS..10 LDA BUFF.BASE+256,Y HI-BYTE FILLED IN
 7920 INY
 7930 WS..11 EOR BUFF.BASE+256,Y HI-BYTE FILLED IN
 7940 WS..12 CPY INDEX.OF.LAST.BYTE
 7950 AND #$FC
 7960 TAX
 7970 LDA BIT.PAIR.TABLE+3,X
 7980 WS..13 LDX #MODIFIER
 7990 STA DRV.Q6H,X
 8000 LDA DRV.Q6L,X

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 39 of 168

 8010 WS..14 LDA BUFF.BASE+256,Y HI-BYTE FILLED IN
 8020 INY
 8030 BCC WS...8
 8040 BCS .15 ...3 CYCLE NOP
 8050 .15 BCS WS..17 ...ALWAYS
 8060 *---WRITE BYTE AT BUFFER.00---------------------------
 8070 WS..16 .DA #$AD,BYTE.AT.BUF00 4 CYCLES: LDA BYTE.AT.BUF00
 8080 STA DRV.Q6H,X
 8090 LDA DRV.Q6L,X
 8100 PHA
 8110 PLA
 8120 PHA
 8130 PLA
 8140 WS..17 LDX LAST.BYTE
 8150 LDA BIT.PAIR.TABLE+3,X
 8160 WS..18 LDX #MODIFIER
 8170 STA DRV.Q6H,X
 8180 LDA DRV.Q6L,X
 8190 LDY #0
 8200 PHA
 8210 PLA
 8220 *---WRITE DATA TRAILER: $DE AA EB FF----------
 8230 NOP
 8240 NOP
 8250 .19 LDA DATA.TRAILER,Y
 8260 JSR WRITE3
 8270 INY
 8280 CPY #4
 8290 BNE .19
 8300 CLC SIGNAL NO ERROR
 8310 WS.RET LDA DRV.Q7L,X DRIVE TO SAFE MODE
 8320 LDA DRV.Q6L,X
 8330 RTS
 8340 *--------------------------------
 8350 WRITE1 CLC
 8360 WRITE2 PHA
 8370 PLA
 8380 WRITE3 STA DRV.Q6H,X
 8390 ORA DRV.Q6L,X
 8400 RTS
 8410 *--------------------------------
 8420 PRE.NYBBLE
 8430 LDA RWB.BUFFER PLUG IN ADDRESS TO LOOP BELOW
 8440 LDY RWB.BUFFER+1
 8450 CLC
 8460 ADC #2
 8470 BCC .1
 8480 INY
 8490 .1 STA PN...6+1
 8500 STY PN...6+2
 8510 SEC
 8520 SBC #$56
 8530 BCS .2
 8540 DEY
 8550 .2 STA PN...5+1
 8560 STY PN...5+2

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 40 of 168

 8570 SEC
 8580 SBC #$56
 8590 BCS .3
 8600 DEY
 8610 .3 STA PN...4+1
 8620 STY PN...4+2
 8630 *---PACK THE LOWER TWO BITS INTO TBUF-------------
 8640 LDY #170
 8650 PN...4 LDA BUFF.BASE-170,Y ADDRESS FILLED IN
 8660 AND #3
 8670 TAX
 8680 LDA BIT.PAIR.RIGHT,X
 8690 PHA
 8700 PN...5 LDA BUFF.BASE-84,Y
 8710 AND #3
 8720 TAX
 8730 PLA
 8740 ORA BIT.PAIR.MIDDLE,X
 8750 PHA
 8760 PN...6 LDA BUFF.BASE+2,Y
 8770 AND #3
 8780 TAX
 8790 PLA
 8800 ORA BIT.PAIR.LEFT,X
 8810 PHA
 8820 TYA
 8830 EOR #$FF
 8840 TAX
 8850 PLA
 8860 STA TBUF,X
 8870 INY
 8880 BNE PN...4
 8890 *---DETERMINE BUFFER BOUNDARY CONDITIONS----------
 8900 *---AND SETUP WRITE.SECTOR ACCORDINGLY------------
 8910 LDY RWB.BUFFER
 8920 DEY
 8930 STY INDEX.OF.LAST.BYTE
 8940 LDA RWB.BUFFER
 8950 STA WS...5-1
 8960 BEQ .7
 8970 EOR #$FF
 8980 TAY
 8990 LDA (RWB.BUFFER),Y
 9000 INY
 9010 EOR (RWB.BUFFER),Y
 9020 AND #$FC
 9030 TAX
 9040 LDA BIT.PAIR.TABLE+3,X
 9050 .7 STA BYTE.AT.BUF00 =0 IF BUFFER NOT SPLIT
 9060 BEQ .9
 9070 LDA INDEX.OF.LAST.BYTE
 9080 LSR
 9090 LDA (RWB.BUFFER),Y
 9100 BCC .8
 9110 INY
 9120 EOR (RWB.BUFFER),Y

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 41 of 168

 9130 .8 STA BYTE.AT.BUF01
 9140 .9 LDY #$FF
 9150 LDA (RWB.BUFFER),Y
 9160 AND #$FC
 9170 STA LAST.BYTE
 9180 *---INSTALL BUFFER ADDRESSES IN WRITE.SECTOR------
 9190 LDY RWB.BUFFER+1
 9200 STY WS...5+2
 9210 STY WS...7+2
 9220 INY
 9230 STY WS...8+2
 9240 STY WS..10+2
 9250 STY WS..11+2
 9260 STY WS..14+2
 9270 *---INSTALL SLOT*16 IN WRITE.SECTOR---------------
 9280 LDX SLOT.X16
 9290 STX WS...6+1
 9300 STX WS...9+1
 9310 STX WS..13+1
 9320 STX WS..18+1
 9330 RTS
 9340 *--------------------------------
 9350 WAIT.FOR.OLD.MOTOR.TO.STOP
 9360 EOR OLD.SLOT SAME SLOT AS BEFORE?
 9370 ASL (IGNORE DRIVE)
 9380 BEQ .2 ...YES
 9390 LDA #1 LONG MOTOR.TIME
 9400 STA MOTOR.TIME+1 (COUNTS BACKWARDS)
 9410 .1 LDA OLD.SLOT
 9420 AND #$70
 9430 TAX
 9440 BEQ .2 ...NO PREVIOUS MOTOR RUNNING
 9450 JSR CHECK.IF.MOTOR.RUNNING.X
 9460 BEQ .2 ...NOT RUNNING YET
 9470 LDA #1 DELAY ANOTHER 100 USECS
 9480 JSR DELAY.100
 9490 LDA MOTOR.TIME+1
 9500 BNE .1 KEEP WAITING
 9510 .2 RTS
 9520 *--------------------------------
 9530 .BS $FF9B-* <<<<EMPTY SPACE>>>>
 9540 *--------------------------------
 9550 IRQ
 9560 PHA SAVE A-REG
 9570 LDA $45 SAVE LOC $45
 9580 STA SAVE.LOC45
 9590 PLA SAVE A-REG AT LOC $45
 9600 STA $45
 9610 PLA GET STATUS BEFORE IRQ
 9620 PHA
 9630 AND #$10 SEE IF "BRK"
 9640 BNE .2 ...YES, LET MONITOR DO IT
 9650 LDA $D000 SAVE $D000 BANK ID
 9660 EOR #$D8
 9670 BEQ .1
 9680 LDA #$FF

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 42 of 168

 9690 .1 STA INTBANKID
 9700 STA SAVE.D000
 9710 LDA #$BF PUSH FAKE "RTI" VECTOR WITH
 9720 PHA IRQ DISABLED
 9730 LDA #$50 AND SET TO RETURN TO $BF50
 9740 PHA
 9750 LDA #4
 9760 PHA
 9770 .2 LDA #$FA PUSH "RTS" VECTOR FOR MONITOR
 9780 PHA
 9790 LDA #$41
 9800 PHA
 9810 CALL.MONITOR
 9820 STA $C082 SWITCH TO MOTHERBOARD
 9830 *--------------------------------
 9840 RESET
 9850 LDA RESET.VECTOR+1
 9860 PHA PUSH "RTS" VECTOR FOR MONITOR
 9870 LDA RESET.VECTOR
 9880 PHA
 9890 JMP CALL.MONITOR
 9900 *--------------------------------
 9910 RESET.VECTOR
 9920 .DA $FA61 MON.RESET-1
 9930 *--------------------------------
 9940 INT.SPLICE
 9950 STA INTAREG
 9960 LDA SAVE.LOC45
 9970 STA $45
 9980 LDA $C08B SWITCH TO MAIN $D000 BANK
 9990 LDA SAVE.D000
 10000 JMP IRQXIT.3
 10010 *--------------------------------
 10020 .BS $FFFA-* <<<<<EMPTY SPACE>>>>>
 10030 *--------------------------------
 10040 V.NMI .DA $03FB
 10050 V.RESET .DA RESET
 10060 V.IRQ .DA IRQ
 10070 *--------------------------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 43 of 168

Will ProDOS Work on a Franklin?

Bob Stout

March 1984

If you try to boot up ProDOS on a Franklin, it probably will fail. The ProDOS boot
routine checks to see if you are in a genuine Apple monitor ROM. However, you can
make it work.

Start the boot procedure; when meaningful action appears to have ceased, press the
RESET switch. Get into the monitor and type 2647:EA EA and 2000G. Voila!

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 44 of 168

Will ProDOS Really Fly?

Bob Sander-Cederlof

March 1984

ProDOS appears to have been eclipsed by MacIntosh. The major software houses are
probably putting their main effort into Mac.

ARTSCI has announced a ProDOS version of their MagiCalc spreadsheet program. Owners
of the DOS 3.3 version may upgrade for $40, new customers pay $149.95. The only
differences claimed are faster disk I/O and ability to edit the printer setup string.
Nice, but $40 is a lot. And the spreadsheet files would no longer be accessible to
DOS-based utilities.

ARTSCI will also send you their ProDOS catalog sorter program, complete with
BASIC.SYSTEM, CONVERT, FILER, and the ProDOS image for only $24.95. Apple will
reputedly be selling ProDOS with a user's manual and some tutorial files in addition
to the files on ARTSCI's disk, but price and date are still unclear. (You get them
free with a new disk drive.)

Practical Peripherals has announced a new clock card which is ProDOS compatible.
Their design is apparently an upgrade of Superclock II (by Jeff Mazur, Westside
Electronics). ProDOS was designed around Thunderclock, so other clocks must either
emulate one of the Thunderclock modes or patch ProDOS during the boot process.
Applied Engineering's new Timemaster II emulates Thunderclock and several others, so
it is fully ProDOS compatible.

According to Don Lancaster, Applewriter //e has been written so that changing to
ProDOS would be easy. Therefore we might expect a ProDOS-based version of this
popular word processor to be announced soon. Or maybe they won't bother to announce
it.

Meanwhile, I know of at least two people with plans to integrate the faster RWTS
ProDOS uses into their enhanced DOS 3.3 packages. Have you seen the latest ads for
David-DOS? Dave Weston compares the speeds of his fast DOS with DOS 3.3 and Pro-DOS.
Guess what ... Pro-DOS doesn't win.

Unless you MUST have file compatibility with Apple /// SOS; or you MUST have hard
hard-disk support for very large files; or you MUST have a hierarchical file
directory; then stick with DOS 3.3, enhanced by Dave, or Bill Basham, or Art Schumer,
or others. And if you MUST have at least 32K of program space with Applesoft; or you
MUST have Integer BASIC support; or you MUST have compatibility with hundreds of
existing software products; then stick with DOS 3.3.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 45 of 168

More on ProDOS and Nonstandard Apples

June 1984

In the March issue we published Bob Stout's note on how to make ProDOS boot in a
Franklin computer. The current issue, (No. 9) of Hardcore Computist points out that
the address given in that note didn't work for the ProDOS version dated 1-JAN-84.
Apparently Bob was referring to an earlier version. The correct address for the NOPs
is $265B.

In a similar vein, inside this issue Jan Eugenides points out that ProDOS will also
fail in an Apple with a modified Monitor ROM. He then gives a slightly different
patch to defeat the check code.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 46 of 168

Booting ProDOS with a Modified Monitor ROM

Jan Eugenides

June 1984

You may have already figured this out, but ProDOS won't boot if you have installed S.
Knouse's modified ROM in your Apple. This can easily be fixed, as follows:

 * On track 1, sector C, change bytes B4-B6 from AE B3 FB to A2 EA EA. This tells
ProDOS your machine is a II+. If it's a //e, make B5 an A0 instead.
 * On track 1, sector 9, change bytes 60-61 from A9 00 to A5 0C. This defeats the
ROM check routine.

Ta daaa! Now ProDOS works just fine with your modified ROM.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 47 of 168

Finding Memory Size in ProDOS

Bob Sander-Cederlof

March 1985

On page 6-63 of Beneath Apple ProDOS there is a small piece of code designed to
determine how much memory there is:

 LDA $BF98
 ASL
 ASL
 BIT 0
 BPL SMLMEM 48K
 BVS MEM128 128K
 ... otherwise 64K

The code will not work. The BIT 0 will test bits 7 and 6 of memory location $0000,
which have nothing whatsoever to do with how much memory is in your machine. What was
intended was to test bits 7 and 6 of the A-register, or in other words bits 5 and 4
of $BF98. Here is one way you can do that:

 LDA $BF98
 ASL
 ASL
 ASL
 BCC SMLMEM 48K
 BMI MEM128 128K
 ... OTHERWISE 64K

Notice that not only does this perform the test correctly, it is also one byte
shorter!

If you insist on using the same number of bytes, here is another way to test those
bits:

 LDA $BF98
 AND #%00110000 ISOLATE BITS 5 AND 4
 CMP #%00100000
 BCC SMLMEM 48K
 BNE MEM128 128K
 ... OTHERWISE 64K

If any of you have discovered any other problems with the sample code in this book,
pass them along.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 48 of 168

Shrinking Code Inside ProDOS

Bob Sander-Cederlof

April 1985

David Johnson challenged me a few days ago. We were talking about ProDOS: the need
for a ProDOS version of the S-C Macro Assembler, the merits vs. enhanced DOS 3.3, and
the rash of recent articles on shrinking various routines inside DOS to make room for
more features.

I've been avoiding ProDOS as much as possible, trying not to notice its ever-
increasing market-share. Dave's comment, "ProDOS is a fertile field for your
shrinking talent," may have finally pushed me into action.

I am trying to make the ProDOS version of the S-C Macro Assembler, but is hard. I
have Apple's manuals, Beneath Apple ProDOS, and the supplement to the latter book
which explains almost every line of ProDOS code. Nevertheless, version 1.1.1 of
ProDOS doesn't seem to conform to all these descriptions in every particular. I spent
four hours last night chasing one little discrepancy. (Turned out to be my own bug,
though.)

In the process, I ran across the subroutine ProDOS uses to convert binary numbers to
decimal for printing. In version 1.1.1 it starts at $A62F, and with comments looks
like this.

 1000 *SAVE S.PRODOS NUMOUT
 1010 *--------------------------------
 1020 .OR $A62F
 1030 .TA $800
 1040 *--------------------------------
 1050 * CONVERT 00.XX.AA FROM BINARY TO DECIMAL
 1060 * STORE UNITS DIGIT AT $201,Y
 1070 * STORE OTHER DIGITS AT SUCCESSIVE LOWER ADDRESSES
 1080 *
 1090 * Note: it is assumed and required that
 1100 * ACCUM+2 already by zeroed!
 1110 * Either that, or already set to the
 1120 * highest byte of a 24-bit value.
 1130 *--------------------------------
 1140 CONVERT.TO.DECIMAL
 1150 STX ACCUM+1
 1160 STA ACCUM
 1170 .1 JSR DIVIDE.ACCUM.BY.TEN
 1180 LDA REMAINDER
 1190 ORA #"0"
 1200 STA BUFFER+1,Y
 1210 DEY
 1220 LDA ACCUM CHECK IF QUOTIENT ZERO
 1230 ORA ACCUM+1
 1240 ORA ACCUM+2
 1250 BNE .1
 1260 RTS
 1270 *--------------------------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 49 of 168

 1280 DIVIDE.ACCUM.BY.TEN
 1290 LDX #24 24 BITS IN DIVIDEND
 1300 LDA #0 START WITH REM=0
 1310 STA REMAINDER
 1320 .1 JSR SHIFT.ACCUM.LEFT
 1330 ROL REMAINDER
 1340 SEC REDUCE REMAINDER MOD 10
 1350 LDA REMAINDER
 1360 SBC #10
 1370 BCC .2 STILL < 10
 1380 STA REMAINDER
 1390 INC ACCUM QUOTIENT BIT
 1400 .2 DEX NEXT BIT
 1410 BNE .1
 1420 RTS
 1430 *--------------------------------
 1440 ACCUM .EQ $BCAF,BCB0,BCB1
 1450 REMAINDER .EQ $BCB2
 1460 BUFFER .EQ $0200
 1470 *--------------------------------
 1480 .OR $AAD7
 1490 .TA $900
 1500 *--------------------------------
 1510 SHIFT.ACCUM.LEFT
 1520 ASL ACCUM
 1530 ROL ACCUM+1
 1540 ROL ACCUM+2
 1550 RTS
 1560 *--------------------------------
 1570 .LIF

The conversion routine is designed to handle values between 0 and $FFFFFF. The
heghest byte must already have been stored at ACCUM+2 before calling
CONVERT.TO.DECIMAL. The middle byte must be in the X-register, and the low byte in
the A-register. The decimal digits will be stored in ASCII in the $200 buffer,
starting and $201+Y and working backwards.

One way of converting from binary to decimal is to perform a series of divide-by-ten
operations. After each division, the remainder will be the next digit of the decimal
value, working from right to left. That is the technique ProDOS uses, and the
division is done by the subroutine in lines 1280-1420.

The dividend is in ACCUM, a 3-byte variable. The low byte is first, then the middle,
and finally the high byte. One more byte is set aside for the remainder. A 24-step
loop is set up to process all 24 bits of ACCUM. In the loop ACCUM and REMAINDER are
shifted left. If REMAINDER is 10 or more, it is reduced by ten and the next quotient
bit set to 1; otherwise the next quotient bit is 0.

The first possible improvement I noted was in the area of lines 1330-1360. the ROL
REMAINDER will always leave carry status clear, because we never let REMAINDER get
larger than 9. If we delete the SEC instruction, and change SBC #10 to SBC #9
(because carry clear means we need to borrow), we can save one byte. But that's not
really worth the effort.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 50 of 168

Next I realized that REMAINDER could be carried in the A-register within the 24-step
loop, and not stored until the end of the loop. Here is that version, which saves
seven bytes (original = 31 bytes, this one = 24 bytes):

 1260 DIVIDE.ACCUM.BY.TEN
 1270 LDX #24 24 BITS IN DIVIDEND
 1280 LDA #0 START WITH REM=0
 1290 .1 JSR SHIFT.ACCUM.LEFT
 1300 ROL
 1310 CMP #10
 1320 BCC .2 STILL < 10
 1330 SBC #10
 1340 INC ACCUM QUOTIENT BIT
 1350 .2 DEX NEXT BIT
 1360 BNE .1
 1370 STA REMAINDER
 1380 RTS

To make sure my version really worked, I re-assembled the conversion program with an
origin of $800, and appended a little test program. Here is my test program, which
converts the value at $0000...0002 and prints it out.

 1510 T LDA 0
 1520 STA ACCUM+2
 1530 LDX 1
 1540 LDA 2
 1550 LDY #10
 1560 JSR CONVERT.TO.DECIMAL
 1570 .1 INY
 1580 LDA BUFFER+1,Y
 1590 JSR $FDED
 1600 CPY #10
 1610 BCC .1
 1620 RTS

My best version is yet to come. I considered the fact that we could SHIFT the next
quotient bit into the low end of ACCUM rather than using INC ACCUM to set a one-bit.
I rearranged the loop so that the remainder reduction was done first, followed by the
shift-left operation. I had to change the remainder reduction to work modulo 5 rather
than 10, because the shifting operation came afterwards. I also had to inlcude my own
three lines of code to ROL ACCUM, since the little subroutine in ProDOS started with
ASL ACCUM. The result is still shorter than 31 bytes, but only four bytes shorter.
Nevertheless, it is faster and neater, in my opinion.

 1640 DIVIDE.ACCUM.BY.TEN.SHORTEST
 1650 LDX #24 24 BITS IN DIVIDEND
 1660 LDA #0 START WITH REM=0
 1670 .1 CMP #5
 1680 BCC .2 STILL < 10
 1690 SBC #5
 1700 .2 ROL ACCUM
 1710 ROL ACCUM+1
 1720 ROL ACCUM+2
 1730 ROL
 1740 DEX NEXT BIT
 1750 BNE .1

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 51 of 168

 1760 STA REMAINDER
 1770 RTS

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 52 of 168

Review: Apple ProDOS: Advanced Features for Programmers

Bill Morgan

May 1985

Gary Little, the prolific author of Inside the Apple //e and Inside the Apple //c,
has yet another new book out. This one is called Apple ProDOS: Advanced Features for
Programmers. In this volume Little covers just about all you need to know to write
assembly language programs under ProDOS, from simply passing commands to
BASIC.SYSTEM, through great detail on all the MLI calls, to writing your own
interrupt handlers and device drivers.

Here's a quick summary of the book's contents:

 1. An Introduction to ProDOS -- Little starts out with the history of Apple's
DOS's, a comparison of ProDOS and DOS 3.3, and a summary of important features of
ProDOS.
 2. Files and File Management -- Here he covers the directory structures, file
structures, disk formatting, and gives us a READ.BLOCK program.
 3. Loading and Installing ProDOS -- This chapter goes into the boot process,
ProDOS' memory usage, and the Global Page.
 4. The Machine Language Interface -- This is the information on using the MLI, its
error codes, and complete details of all MLI calls.
 5. System Programming Featuring BASIC.SYSTEM -- Here we have a discussion of
system programs, the structure and commands of BASIC.SYSTEM, and assembly language
programming under BASIC.SYSTEM.
 6. Interrupts -- In this chapter Little covers interrupts in general, ProDOS
interrupt handling, and programming the Apple mouse.
 7. Disk Drivers -- Nearing the end, we go into identifying and handling foreign
disk drivers, driver commands, the /RAM driver, and adding your own driver.
 8. ProDOS Clock Drivers -- And finally we find out about using the built-in clock
support, adding a clock driver, and reading the date and time from Applesoft.

An important strength of this book is the wealth of examples. In the chapter on the
Machine Language Interface there is an example of the correct use of EVERY MLI call.
The BASIC.SYSTEM chapter includes an ONLINE command, to identify all disk volumes
currently on line. The chapter on interrupts contains a couple of examples of mouse
programming. The Disk driver section has a listing of a simple /RAM driver for main
memory. And this is just a sample of the useful code provided in Little's new book. A
companion disk containing all of the book's programs and more is available for $25.00
from the author.

I hear some of you asking: How does Apple ProDOS: Advanced Features (APAF) compare to
Beneath Apple ProDOS (BAP)? Well, the two books complement each other quite nicely.
With all its examples, treatment of interrupt handlers and device drivers, and
overall clarity, I'd say that APAF is the better book on programming under ProDOS.
BAP has useful examples as well, and better detail about the internals of diskette
formatting and how ProDOS works, especially with its 120+ page supplement describing
the code on a line-by-line basis. So if you're concerned with understanding the inner
workings of the operating system, or with modifying its behavior, BAP is the book to
have. Otherwise, get APAF for the best information on programming using ProDOS.
Personally, I'm glad to have both books on the shelf here, along with Apple's ProDOS
Technical Reference Manual.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 53 of 168

Apple ProDOS: Advanced Features for Programmers, by Gary B. Little. Brady
Communications Co., 1985. 266+iv pp., Reference Card. $17.95. Available from S-C
Software for $17 + shipping.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 54 of 168

DATE Command for ProDOS

Bill Morgan

May 1985

One of the nice new features in ProDOS is the way the diskette catalog shows the date
of creation and last modification for each file, IF you have a clock/calendar card
installed in your Apple. Well I don't have such a card in either of the Apples I use
regularly, at work or at home. And no //c has a clock! (Yet, at least. I'll bet
someone will come up with a way...)

Anyway, I got tired of always seeing <NO DATE> and started figuring out how to set a
date without a clock to do it for me. A look at Beneath Apple ProDOS informed me that
the current date is transformed into the format YYYYYYYMMMMDDDDD and stored (in the
usual 6502 low byte/high byte sequence) at $BF90-BF91 in the ProDOS Global Pages (the
fixed locations of all of the accessible system variables). The first thing I did was
manually convert the current date into that format and poke it in from the Monitor.
That went like this:

 $BF90 $BF91
May = $5 = 0101 MMM DDDDD YYYYYYY M
 10 = $A = 01010 101 01010 1010101 0
'85 = $55 = 1010101 $AA $AA

So, the values to poke into $BF90-91 were $AA and $AA. What better time than a four-A
day to start such a project!

That experiment worked just fine: the next file I saved on the disk showed creation
and modification dates of 10-MAY-85, just as I had hoped. With that success under my
belt the next step had to be to come up with a program to read and/or set those date
bytes. And, while I'm at it, why not take advantage of ProDOS' built-in hooks for
installing new commands and add a DATE command to the operating system?

How do I go about adding a command? The ProDOS Technical Reference Manual is pretty
sketchy on the subject, but two other books, Beneath Apple ProDOS and the new Apple
ProDOS: Advanced Features for Programmers, have good descriptions and examples of the
procedure. If you're going to do much assembly language programming under ProDOS you
should have one or both of those books.

When ProDOS fails to recognize a command it does a JSR EXTRNCMD ($BE06) to find out
if an external command processor will claim this one. What I have to do is install
the address of DATE in $BE07-08, after moving the address that was already there into
a JMP instruction. This way, if DATE doesn't recognize the command it can pass it
along to any other processor that might have been there before.

Processing of an external command is normally divided into two phases, a parser and a
handler. The parser section will scan the command name at the beginning of the line.
If the command is not recognized, the parser should set the carry bit and JMP on to
the address found in EXTRNCMD to see if another external processor will claim it.

If the command is recognized, the parser can set certain bits in PBITS ($BE54-55) to
signify which parameters are permitted or required on the command line, and store the
address of the handler in EXTRNADDR ($BE50-51). After storing the command length

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 55 of 168

minus one in XLEN ($BE52) and a zero in XCNUM ($BE53), to signify that an external
processor did claim the command, the parser then returns control to ProDOS to scan
the rest of the line. If the line was syntactically correct, ProDOS will return the
values of the parameters in a set of standard locations ($BE58-6F) and pass control
back to the handler address specified.

Since DATE is a simple processor that uses a nonstandard parameter, I just set PBITS
to zero, to indicate no parsing necessary, and store the address of an RTS
instruction in EXTRNADDR. I then proceed to do all my processing before returning to
ProDOS.

There is one additional wrinkle to using an external command with ProDOS: where do I
put my code so ProDOS, Applesoft, and others don't stomp all over it? In the interest
of simplicity I have ignored that problem here. The best procedure, as shown in the
books mentioned above, is to call ProDOS to assign me a buffer and then relocate my
code into that buffer. The examples in the books provide details of this process.

Now, let's take a look at the code:

Lines 1310-1400 install DATE by moving the current External Command address to my
exit JMP instruction and storing DATE's address in the vector.

Lines 1440-1540 check the input buffer to see if this is a DATE command. If not we
branch on down to that JMP instruction where we earlier put the address found in the
External Command vector. This passes control either on to the next external command
in the chain, or back to ProDOS for a SYNTAX ERROR.

If the command matched we go on to lines 1560-1650 to do the necessary housekeeping.
This involves storing the command length-1 in the Global Page, setting a couple of
flags to tell ProDOS not to parse the rest of the command line, and that an external
command has taken over. Then we supply a handler address for the second half of
ProDOS' processing, which in this case is just an RTS instruction. Finally we reach
lines 1670-1690, where we check to see if the character following DATE is a Carriage
Return. If so we branch forward to RETURN.DATE to display the existing date.

If there is more than just DATE on the command line, we must want to set a new date,
so we fall into SET.DATE at line 1710. This routine makes heavy use of
ACCUMULATE.DIGITS at line 2400, so we'll examine that code first. The first step is
to zero the byte where we'll be accumulating the value typed in. Then we scan forward
in the input buffer, looking for a nonblank character. When we find one we first
check to see if it is a slash, which marks the end of a number, or a Carriage Return,
which marks the end of the line. If it was either of those we exit, setting the Carry
bit to indicate which one we found.

If the character found was not a delimiter we next check to see if it is a number. If
not, we have a SYNTAX ERROR. When we do get a number, we strip off the high bits to
convert the ASCII code to a binary value, and save that value. We then multiply the
previous value in ACCUM by 10 and add in the new value. Then it's back to line 2440
to get another character. Lines 2710-2730 load the A-register with the value found
and branch to the error exit if that value was zero.

Now, back to SET.DATE. That routine begins at line 1720 with a DEY to get ready for
the INY at the beginning of ACCUMULATE.DIGITS. We then get the month, check for a
legal value, and store it. Next we get the day, save the status, and check and save
that value. Then it's time to check the status to see if the day was followed by a
slash, or by a Carriage Return. If it was a slash then a year was specified, so we go

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 56 of 168

get that value. If it was a Return no year was present, so we use 1985. (I guess that
means we'll have to reassemble or patch this program every year. I think I can handle
that.)

The last step in SET.DATE is to fold the year, month, and day together as described
above and store the results in the Global Page. The comments in the listing
illustrate how the bits are shuffled around to the correct format. After setting the
date we fall into RETURN.DATE to display the result.

RETURN.DATE, at lines 2080-2290, is quite straightforward. It just gets the bytes
from the Global Page, unfolds them, and calls DEC.OUT to translate them to decimal
numbers and display those numbers. Again, the comments illustrate the bit
manipulations involved in the unfolding process.

The final section of code is DEC.OUT, at lines 2750-2910. In lines 2760-2810 we use
the Y-register to count how many times we can subtract 10 from the number passed in
the A-register. Then lines 2830-2910 restore and save the A-register, make sure the
tens count is non-zero, convert it to a character and print it. We then recover the
units value and print that out.

 1000 *SAVE S.DATE
 1010 *--------------------------------
 1020 *
 1030 * Program to read or set the
 1040 * date bytes in the Global Page
 1050 *
 1060 * by Bill Morgan
 1070 *
 1080 *--------------------------------
 1090 POINTER .EQ $40,41
 1100 ACCUM .EQ $42
 1110 MONTH .EQ $43
 1120 DAY .EQ $44
 1130 TEMP .EQ $45
 1140
 1150 WBUF .EQ $200
 1160
 1170 EXTRNCMD .EQ $BE07
 1180 EXTRNADDR .EQ $BE50,51
 1190 XLEN .EQ $BE52
 1200 XCNUM .EQ $BE53
 1210 PBITS .EQ $BE54
 1220 GP.DATE .EQ $BF90
 1230
 1240 PRAX .EQ $F941
 1250 CROUT .EQ $FD8E
 1260 COUT .EQ $FDED
 1270 *--------------------------------
 1280 .OR $803
 1290 * .TF B.DATE
 1300 *--------------------------------
 1310 INSTALL
 1320 LDA EXTRNCMD+1 exit to old
 1330 STA EXIT+2 user command
 1340 LDA EXTRNCMD
 1350 STA EXIT+1

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 57 of 168

 1360 LDA /DATE become new
 1370 STA EXTRNCMD+1 user command
 1380 LDA #DATE
 1390 STA EXTRNCMD
 1400 RTS
 1410 *--------------------------------
 1420 COMMAND .AS /DATE/
 1430 *--------------------------------
 1440 DATE LDY #0
 1450 STY POINTER point to input buffer
 1460 LDA /WBUF
 1470 STA POINTER+1
 1480 .1 LDA (POINTER),Y scan command
 1490 AND #%01111111
 1500 CMP COMMAND,Y
 1510 BNE ERR.BRIDGE not mine
 1520 INY
 1530 CPY #4
 1540 BCC .1
 1550 *--- ProDOS bookkeeping ---------
 1560 DEY
 1570 STY XLEN command length - 1
 1580 INY
 1590 LDA #0
 1600 STA PBITS don't parse parms
 1610 STA XCNUM external command
 1620 LDA #RTS1
 1630 STA EXTRNADDR no execution after
 1640 LDA /RTS1 command parsing
 1650 STA EXTRNADDR+1
 1660 *--- set or display date? -------
 1670 LDA (POINTER),Y
 1680 CMP #$8D DATE only?
 1690 BEQ RETURN.DATE yes, return old date
 1700 *--------------------------------
 1710 SET.DATE
 1720 DEY
 1730 JSR ACCUMULATE.DIGITS get month
 1740 CMP #13
 1750 BCS ERROR >12 no good
 1760 STA MONTH
 1770 JSR ACCUMULATE.DIGITS get day
 1780 PHP save status
 1790 CMP #32
 1800 BCC GO.ON <=31 ok
 1810
 1820 PLP
 1830 ERR.BRIDGE
 1840 BNE ERROR ...always
 1850
 1860 GO.ON STA DAY
 1870 PLP recover status
 1880 BCC .1 .CC. if "/"
 1890 LDA #85 year defaults to '85
 1900 BNE .2 ...always
 1910 .1 JSR ACCUMULATE.DIGITS get year

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 58 of 168

 1920 CMP #100
 1930 BCS ERROR >99 no good
 1940 .2 PHA save year
 1950 LDA MONTH X 0000MMMM
 1960 LSR M 00000MMM
 1970 ROR M M00000MM
 1980 ROR M MM00000M
 1990 ROR M MMM00000
 2000 STA MONTH
 2010 PLA M 0YYYYYYY
 2020 ROL 0 YYYYYYYM
 2030 STA GP.DATE+1
 2040 LDA MONTH MMM00000
 2050 ORA DAY MMMDDDDD
 2060 STA GP.DATE
 2070 *--------------------------------
 2080 RETURN.DATE
 2090 JSR CROUT
 2100 LDA GP.DATE+1 X YYYYYYYM
 2110 LSR M 0YYYYYYY
 2120 PHA
 2130 LDA GP.DATE M MMMDDDDD
 2140 PHA
 2150 ROR X MMMMDDDD
 2160 LSR X 0MMMMDDD
 2170 LSR X 00MMMMDD
 2180 LSR X 000MMMMD
 2190 LSR X 0000MMMM
 2200 JSR DEC.OUT display month
 2210 LDA #"/" /
 2220 JSR COUT
 2230 PLA X MMMDDDDD
 2240 AND #%00011111 X 000DDDDD
 2250 JSR DEC.OUT display day
 2260 LDA #"/" /
 2270 JSR COUT
 2280 PLA X 0YYYYYYY
 2290 JSR DEC.OUT display year
 2300 *--------------------------------
 2310 GOOD.EXIT
 2320 CLC signal no error
 2330 RTS1 RTS
 2340 *--------------------------------
 2350 ERROR1 PLA clean up
 2360 PLA return addresses
 2370 ERROR SEC signal error
 2380 EXIT JMP RTS1 INSTALL makes address
 2390 *--------------------------------
 2400 ACCUMULATE.DIGITS
 2410 LDA #0
 2420 STA ACCUM zero accumulator
 2430
 2440 .1 INY next character
 2450 LDA (POINTER),Y
 2460 AND #%01111111 hi-bit off
 2470 CMP #' ' space?

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 59 of 168

 2480 BEQ .1 back for another
 2490 CMP #'/' slash?
 2500 BEQ .2 yes, exit .CC.
 2510 CMP #$0D <CR>?
 2520 BEQ .3 yes, exit .CS.
 2530 CMP #'0' too small?
 2540 BCC ERROR1 not digit
 2550 CMP #'9'+1 too big?
 2560 BCS ERROR1 not digit
 2570
 2580 AND #%00001111 isolate value
 2590 STA TEMP stash it
 2600 LDA ACCUM
 2610 ASL X 2
 2620 ASL X 4
 2630 ADC ACCUM X 5
 2640 ASL X 10
 2650 ADC TEMP add new digit
 2660 BCS ERROR1 too big
 2670 STA ACCUM
 2680 BCC .1 ...always
 2690
 2700 .2 CLC .CC. if /
 2710 .3 LDA ACCUM return value
 2720 BEQ ERROR1 0 no good
 2730 RTS
 2740 *--------------------------------
 2750 DEC.OUT
 2760 LDY #0 zero counter
 2770 SEC get ready
 2780 .1 SBC #10 subtract 10
 2790 BCC .2 borrow?
 2800 INY count a 10
 2810 BPL .1 ...always
 2820
 2830 .2 ADC #10 restore borrow
 2840 PHA save units
 2850 TYA print 10's count
 2860 BEQ .3 no leading zero
 2870 ORA #$B0 make character
 2880 JSR COUT print it
 2890 .3 PLA recover units
 2900 ORA #$B0 make character
 2910 JMP COUT return through COUT

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 60 of 168

Reading DOS 3.3 Disks With ProDOS

Bob Sander-Cederlof

July 1985

At the track and sector level, DOS 3.3 disks are identical to ProDOS disks. They both
have 35 tracks, 16 sectors, and the sectors are laid out on the tracks the same way
in both systems. You can use DOS's COPYA program to copy ProDOS disks, and you can
use some ProDOS utilities on DOS disks.

The structure of the files is of course entirely different between the two systems.
Hence the need for the CONVERT program found on ProDOS system master disks, and the
System Utilities Disk that comes with the //c. Unfortunately both of the above
programs have bugs that get in the way nearly every time I want to move a file from
DOS to ProDOS. The one that bites me the most is the way CONVERT dies when it
encounters a DOS filename which does not start with a letter. We routinely use such
"illegal" filenames on our disks to separate and identify sections of long catalogs,
but CONVERT goes absolutely crazy when it finds one.

Therefore, I decided to write a program which could "LOAD" assembler source files
from a DOS 3.3 disk while I am running the ProDOS version of the S-C Macro Assembler.
Even with error messages and other fancy features, the program turns out to be only a
little over $280 bytes long, and it works.

It is based on the fact that the Block Read MLI call does not care whether the disk
being read is a DOS or a ProDOS disk. The Block Read MLI call reads 512 bytes, or two
sectors, at a time. The call looks like this:

 JSR $BF00 (MLI link in global page)
 .DA #$80 (block read code)
 .DA PARMLIST (address of parameters)

MLI returns with carry clear if there was no error, or carry set if there was an
error. The error code will be in the A-register if there was an error.

The PARMLIST for Block Read looks like this:

 PARMLIST .DA #3 (3 parameters)
 .DA #$60 (1-byte unit number)
 .DA BUFFER (address of 512-byte buffer)
 .DA 2 (2-byte block number)

Page 3-17 of "Beneath Apple ProDOS" contains a table which converts block numbers to
physical track/sector, and vice versa. The latest printing of the book also includes
a line which correlates the physical sector values to the DOS 3.3 logical sector.
Boiling it down, you can derive a ProDOS block number from the DOS 3.3 logical sector
by multiplying the track number by 8 and adding a value according to the sector
number from the following table:

 DOS sector #: 0 1 2 3 4 5 6 7 8 9 A B C D E F
 0 7 6 6 5 5 4 4 3 3 2 2 1 1 0 F

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 61 of 168

For example, track 0 sector 2 is in ProDOS block 6. The only problem is, so is DOS
track 0 sector 3. We also need to remember whether a given sector is in the upper or
lower half of a 512-byte block.

I developed the following subroutine, which will translate the DOS logical track and
sector numbers into the appropriate block number, read the block, and return with the
address of the buffer page in which the sector data has been read. Call the routine
with the track number in the A-register and the sector number in the X-register. The
high-byte of the buffer address will return in the X-register. If MLI detects an
error, the subroutine will return with carry set.

RTS LDY #0 ASSUME BLOCK # < $100
 ASL FORM TRACK*8
 ASL
 ASL
 BCC .1 ...BLOCK < $100
 INY ...BLOCK > $0FF
.1 ASL *2, MAKE ROOM FOR H/L FLAG BIT
 ORA BLKTBL,X MERGE FROM SECTOR TRANSLATION
 ROR H/L FLAG BIT TO CARRY
 STA BLOCK
 STY BLOCK+1
 LDX /BLOCK.BUFFER HIGH BYTE OF BUFFER ADDRESS
 BCC .2 ...LOWER HALF OF BUFFER
 INX ...UPPER HALF OF BUFFER
.2 JSR $BF00
 .DA #$80,PARMLIST
 RTS

BLKTBL .HS 00.0E.0D.0C.0B.0A.09.08
 .HS 07.06.05.04.03.02.01.0F

PARMLIST
 .DA #3
 .DA #$60 SLOT 6, DRIVE 1
 .DA BLOCK.BUFFER
BLOCK .DA 0 <FILLED IN>

After playing with the subroutine a while, I proceeded to write the load program.
Using a well-worn copy of "Beneath Apple DOS", I figured out once more how to work
through a DOS catalog. I decided to display a menu of files on the screen, and allow
a single keystroke to select a file to be loaded.

The program that follows is designed to work with the ProDOS version of the S-C Macro
Assembler. Assuming it has been assembled and is in a ProDOS binary file as DOS.LOAD,
and assuming you have booted the ProDOS version of the S-C Macro Assembler, you can
start up the load program by typing "-DOS.LOAD". It will load source files from DOS
disks, which are DOS type I files, and place them in the assembler's edit area. After
selecting the slot and drive, the program reads the DOS catalog and displays 20
filenames at a time. Only type I filenames are displayed, any others are skipped
over. If there are more than 20 files, you can page through them. If you change your
mind about loading a file, you can abort. If you see the file you want to load, you
type a single letter to select it. A few seconds later it has been loaded, and you
are returned to the assembler.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 62 of 168

The assembler's soft entry point is at $8003, and the load program jumps there after
finishing a load or after encountering an error. Three pointer locations in page zero
which the assembler uses are used by the load program: HIMEM ($73,74) points one byte
higher than the program can be loaded; PP ($CA,CB) will point to the beginning of the
program, if it is successfully loaded; LOMEM ($67,68) points to the lowest address
the program can occupy. HIMEM is normally at $7400, and LOMEM at $1000, but these can
be changed with the HIMEM and LOMEM commands. LOMEM could be set as low as $0800.

With these limitations on the program extent ($0800...73FF), you can see that the
maximum size assembler source file that can be loaded from a DOS disk is $6C00 bytes,
or 108 sectors. Or, if you prefer to leave LOMEM at $1000, you can load $6400 bytes
or 100 sectors. Most likely you do not have any source files which are bigger than
that anyway. If you do, you need to load the DOS version of the assembler and split
the files before they can be transferred to ProDOS. The maximum size file of 108 data
sectors would only have one track/sector list, so I did not include any logic to
chain to a second track/sector list. You may be wondering where the load program
itself loads....

The command interpreter I developed for the ProDOS version of the S-C Macro Assembler
has three 1024-byte buffers permanently allocated between $7400 and $7FFF. None of
them will be in use while the load program is executing, so I borrowed some of that
space for the load program. The load program itself loads inside the buffer space
allocated to the EXEC command, at $7400-77FF. The blocks read by MLI will be stored
at $7C00-7DFF, and I will save a copy of the track/sector list for the file being
loaded at $7E00-7EFF.

Now for a description of the actual code. Lines 1270-1410 ask you to type in the slot
and drive numbers of the floppy drive the DOS disk is in. ProDOS uses a "unit
number", which is a coded form of the slot and drive all in one byte. The slot number
is in bits 4-6, and the drive number (0 or 1, corresponding to drives 1 or 2
respectively) in bit 7. My subroutine GETNUM prints a prompt message (selected by the
Y-register), inputs a single character from the keyboard, and checks it for legal
range. GETNUM is designed to accept only digits, starting with "1", and up to but not
including the value in the A-register when GETNUM is called.

Once the unit number has been established, we fall into the LOAD.MENU code. This code
is somewhat convoluted, enough to disgust even me. Interlocking loops? Multiple
entries and exits? Ouch! Maybe it really IS structured code, but just not in
Euclidean space. I think maybe it could be diagrammed on the surface of a Klein
bottle (recursive torus?).

Anyway, let's walk through it. Line 1440-1500 set up a fresh menu display and read in
the DOS VTOC page so we can start reading the catalog. The second and third bytes in
the VTOC page give the track and sector of the first catalog sector. This is almost
always track $11, sector $0F; however, by starting at VTOC, we are a little more
general. We are still assuming we know where the VTOC is, which is track $11, sector
0. Some non-standard software sets up disks with the VTOC somewhere else, but you are
very unlikely to find any S-C source code on such a disk. Each sector of the catalog
also contains the track/sector of the next catalog sector in the 2nd and 3rd bytes.

Lines 1530-1550 read in the next catalog sector and set the pointer to the first file
entry in that sector. Each file entry is 35 bytes long, and the first one starts at
$0B within the sector. The subroutine READ.NEXT.CATALOG.SECTOR will return with carry
set if there are no more catalog sectors. The first time through this code, when we
fall in from the code above, we will read the first catalog sector.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 63 of 168

Lines 1570-1960 pick up filenames out of the catalog sectors and write them on the
screen. Not all file names are used: line 1610 filters out deleted files; lines 1660-
1700 filter out files which are not type I. The track and sector of the active type-I
files are saved in an array, indexed by the menu letter. These values are first
picked up in lines 1620-1650, and added to the array in lines 1870-1940. Lines 1720-
1770 print the menu letter and two dashes, and then lines 1780-1850 print the
filename.

Lines 1950-1960 decrement the line count and test if the screen is full yet. I
arbitrarily call a screen full if it has 20 filenames, leaving room for my three-line
prompt message. We jump to MENU.SELECTION when we reach 20 lines or when we reach the
end of the catalog, whichever comes first.

If we are not yet at the end of catalog and have not yet filled the screen, or if the
file was one that got filtered out of the menu, we come to GET.NEXT.FILE at line
1980. Lines 1990-2040 update the pointer into the catalog sector so that it points at
the next file, if there is another one. If so, we branch back to NEXT.FILE.NAME, to
try the next one in the current sector. If no more names in this sector, we go back
to NEXT.CAT.SECTOR to get the next catalog sector (if any).

When we reach the end of catalog, lines 2070,2080 set a flag. We need a flag to tell
whether it was screen-full or catalog- end which caused us to come to MENU.SELECTION,
so we can either continue through the catalog or wrap-around to the beginning should
you wish to see another screenful of filenames.

The MENU.SELECTION section prints a three-line prompt message and waits for you to
type a character. If you type a space, you seethe next screenful of filenames. (Of
course, if there are fewer than 21 type I files on the disk you will see the same
ones over again.) If you type the RETURN or ESCAPE keys, the load program will abort,
returning directly to the assembler without loading a file. If you type a letter in
the range of the menu, that file will be loaded. Any other key is ignored.

Lines 2260-2370 convert the menu letter you typed into an index to get the track and
sector for the track/sector list of the selected file. The track/sector list contains
the track and sector for every data sector in the file. Line 2310 reads the
track/sector list, and lines 2330-2370 copy it into a special buffer.

The first two bytes of the first data sector of a type-I file contain the length of
the file. We need to know the length so we can figure out where to read the data.
Lines 2390-2510 read in the first data sector and get the file size.

Lines 2520-2630 figure out where PP should be set so that the file exactly fits
between PP and HIMEM, and checks to make sure that it does not go below LOMEM.

Lines 2650-2670 copy the rest of that first sector into the load area, starting at
PP. If the file is so short it doesn't fill the first data sector, the
LOAD.FROM.SECTOR subroutine will return with carry set and we will return to the
assembler, all finished. Otherwise, we fall into the code below, to load the
succeeding data sectors. Eventually we will bump into HIMEM, and we are finished.

Now that this program is working I can see neat ways to extend it. Why restrict it to
type-I files? It could also BLOAD type-B files, as long as an appropiate load address
was set up. It could do the equivalent of a BLOAD on a type-T file, which then could
be BSAVE as type TXT in ProDOS. Seems like we might be able to do away with the need
for CONVERT, at least in the direction of moving from DOS to ProDOS.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 64 of 168

 1000 *SAVE S.DOS.LOAD
 1010 *--------------------------------
 1020 .OR $7400
 1030 .TF DOS.LOAD
 1040 *--------------------------------
 1050 PNTR .EQ $00,01
 1060 CAT.INDEX .EQ $02
 1070 MENU.LETTER .EQ $03
 1080 LINE.COUNT .EQ $04
 1090 TRACK .EQ $05
 1100 SECTOR .EQ $06
 1110 DONE.FLAG .EQ $07
 1120 SIZE .EQ $08,09
 1130 LIMIT .EQ $0A
 1140 *--------------------------------
 1150 LOMEM .EQ $67,68
 1160 HIMEM .EQ $73,74
 1170 PP .EQ $CA,CB
 1180 *--------------------------------
 1190 BLOCK.BUFFER .EQ $7C00
 1200 TS.LIST .EQ $7E00
 1210 *--------------------------------
 1220 MON.RDKEY .EQ $FD0C
 1230 MON.CROUT .EQ $FD8E
 1240 MON.PRHEX .EQ $FDDA
 1250 MON.COUT .EQ $FDED
 1260 *--------------------------------
 1270 DOS.LOAD
 1280 LDY #EM3 "SLOT:"
 1290 LDA #"8" 1...7
 1300 JSR GETNUM 00000SSS
 1310 LSR 000000SS S
 1320 ROR S000000S S
 1330 ROR SS000000 S
 1340 ROR SSS00000
 1350 STA UNIT
 1360 LDY #EM4 "DRIVE:"
 1370 LDA #"3" 1...2
 1380 JSR GETNUM
 1390 LSR
 1400 LSR
 1410 ROR UNIT DSSS0000
 1420 *--------------------------------
 1430 LOAD.MENU
 1440 JSR SETUP.SCREEN
 1450 LDA #17 TRACK 17
 1460 LDX #0 SECTOR 0
 1470 STX DONE.FLAG
 1480 STX PNTR
 1490 JSR RTS READ DOS 3.3 VTOC
 1500 STX PNTR+1 SET POINTER
 1510 *--------------------------------
 1520 NEXT.CAT.SECTOR
 1530 JSR READ.NEXT.CATALOG.SECTOR
 1540 BCS END.OF.CATALOG
 1550 LDY #$0B

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 65 of 168

 1560 *--------------------------------
 1570 NEXT.FILE.NAME
 1580 STY CAT.INDEX
 1590 LDA (PNTR),Y TRACK
 1600 BEQ END.OF.CATALOG
 1610 BMI GET.NEXT.FILE ...DELETED FILE
 1620 STA TRACK
 1630 INY
 1640 LDA (PNTR),Y
 1650 STA SECTOR
 1660 INY
 1670 LDA (PNTR),Y FILE TYPE
 1680 ASL INGORE LOCK BIT
 1690 CMP #2 MUST BE TYPE I
 1700 BNE GET.NEXT.FILE ...NOT I, SKIP OVER IT
 1710 *---DISPLAY MENU LINE------------
 1720 LDA MENU.LETTER
 1730 JSR MON.COUT DISPLAY MENU LETTER,
 1740 INC MENU.LETTER
 1750 LDA #"-"
 1760 JSR MON.COUT ...TWO DASHES
 1770 JSR MON.COUT
 1780 LDX #30
 1790 .1 INY
 1800 LDA (PNTR),Y
 1810 ORA #$80
 1820 JSR MON.COUT ...AND FILENAME
 1830 DEX
 1840 BNE .1
 1850 JSR MON.CROUT
 1860 *---SAVE T/S OF TS-LIST----------
 1870 LDA MENU.LETTER
 1880 AND #$1F CONVERT TO INDEX
 1890 TAX
 1900 DEX ...SINCE LETTER INC'ED ALREADY
 1910 LDA TRACK
 1920 STA TRACKS,X
 1930 LDA SECTOR
 1940 STA SECTORS,X
 1950 DEC LINE.COUNT
 1960 BEQ MENU.SELECTION BRANCH IF SCREEN FULL
 1970 *--------------------------------
 1980 GET.NEXT.FILE
 1990 CLC
 2000 LDA CAT.INDEX
 2010 ADC #35
 2020 TAY BUMP INDEX
 2030 BCC NEXT.FILE.NAME
 2040 BCS NEXT.CAT.SECTOR
 2050 *--------------------------------
 2060 END.OF.CATALOG
 2070 LDA #1
 2080 STA DONE.FLAG
 2090 MENU.SELECTION
 2100 LDY #EM0 3-LINE PROMPT
 2110 JSR PRINT.MSG

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 66 of 168

 2120 .2 JSR MON.RDKEY
 2130 CMP #$E0 LOWER CASE?
 2140 BCC .3
 2150 AND #$DF STRIP CASE
 2160 .3 CMP #" " SPACE?
 2170 BEQ MENU.NEXT.SCREEN
 2180 CMP #$8D RETURN?
 2190 BEQ ABORT
 2200 CMP #$9B ESCAPE?
 2210 BEQ ABORT
 2220 CMP #"A"
 2230 BCC .2 NOT A-Z, SO IGNORE
 2240 CMP MENU.LETTER
 2250 BCS .2 BEYOND VALID VALUES
 2260 *---GET T/S LIST-----------------
 2270 AND #$1F CONVERT LETTER TO INDEX
 2280 TAY
 2290 LDX SECTORS,Y
 2300 LDA TRACKS,Y
 2310 JSR RTS READ TRACK/SECTOR LIST
 2320 STX PNTR+1 SET POINTER
 2330 LDY #0
 2340 .4 LDA (PNTR),Y MOVE T/S LIST TO ITS BUFFER
 2350 STA TS.LIST,Y
 2360 INY
 2370 BNE .4
 2380 *---GET THE FILE SIZE------------
 2390 LDY #$0C POINT AT FIRST T/S
 2400 STY CAT.INDEX
 2410 LDA TS.LIST,Y TRACK
 2420 BEQ ERR.EMPTY.FILE
 2430 LDX TS.LIST+1,Y SECTOR
 2440 JSR RTS READ FIRST SECTOR
 2450 STX PNTR+1
 2460 LDY #0
 2470 LDA (PNTR),Y GET FILE SIZE
 2480 STA SIZE
 2490 INY
 2500 LDA (PNTR),Y
 2510 STA SIZE+1
 2520 *---MAKE ROOM FOR FILE-----------
 2530 SEC
 2540 LDA HIMEM
 2550 SBC SIZE
 2560 STA PP SET ASSEMBLER'S POINTER
 2570 STA LPTR+1 AND OUR LOAD POINTER
 2580 LDA HIMEM+1
 2590 SBC SIZE+1
 2600 STA PP+1
 2610 STA LPTR+2
 2620 CMP LOMEM+1
 2630 BCC ERR.TOO.BIG ...TOO LOW
 2640 *---LOAD FROM 1ST SECTOR---------
 2650 INY POINT AT FIRST PROGRAM BYTE
 2660 .5 JSR LOAD.FROM.SECTOR
 2670 BCS ABORT ...END OF LOAD

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 67 of 168

 2680 *---LOAD REST OF FILE------------
 2690 LDY CAT.INDEX
 2700 INY
 2710 INY
 2720 BEQ ABORT
 2730 STY CAT.INDEX NEXT TRACK/SECTOR
 2740 LDA TS.LIST,Y TRACK
 2750 BEQ ABORT ...END OF FILE
 2760 LDX TS.LIST+1,Y SECTOR
 2770 JSR RTS READ IT
 2780 STX PNTR+1 SET POINTER
 2790 LDY #0
 2800 BEQ .5 ...ALWAYS
 2810 *--------------------------------
 2820 ABORT JMP $8003 WARMSTART ASSEMBLER
 2830 *--------------------------------
 2840 MENU.NEXT.SCREEN
 2850 LDA DONE.FLAG
 2860 BEQ .1
 2870 JMP LOAD.MENU START ALL OVER
 2880 .1 JSR SETUP.SCREEN
 2890 JMP GET.NEXT.FILE
 2900 *--------------------------------
 2910 ERR.EMPTY.FILE
 2920 LDY #EM1
 2930 .HS 2C
 2940 ERR.TOO.BIG
 2950 LDY #EM2
 2960 JSR PRINT.MSG
 2970 JMP $8003
 2980 *--------------------------------
 2990 PRINT.MSG
 3000 .1 LDA EMS,Y
 3010 BEQ .2 00 IS END OF MESSAGE
 3020 JSR MON.COUT
 3030 INY
 3040 BNE .1 ...ALWAYS
 3050 .2 RTS
 3060 *--------------------------------
 3070 GETNUM
 3080 STA LIMIT
 3090 JSR PRINT.MSG PROMPT
 3100 .1 JSR MON.RDKEY
 3110 CMP #"1"
 3120 BCC .1 GO BACK IF TOO SMALL
 3130 CMP LIMIT
 3140 BCS .1 ...OR TOO LARGE
 3150 JSR MON.COUT ECHO CHARACTER
 3160 EOR #"0" EXTRACT VALUE
 3170 RTS
 3180 *--------------------------------
 3190 READ.NEXT.CATALOG.SECTOR
 3200 LDA #$0B RESTART INDEX
 3210 STA CAT.INDEX
 3220 SEC IN CASE NO MORE SECTORS
 3230 LDY #2

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 68 of 168

 3240 LDA (PNTR),Y
 3250 TAX SECTOR
 3260 DEY
 3270 LDA (PNTR),Y TRACK
 3280 BEQ .1 END OF CATALOG
 3290 JSR RTS READ IT
 3300 STX PNTR+1 PAGE IN BUFFER
 3310 CLC SIGNAL WE GOT A SECTOR
 3320 .1 RTS
 3330 *--------------------------------
 3340 * READ TRACK/SECTOR
 3350 * (A)=TRACK, (X)=SECTOR
 3360 * RETURNS (X)=PAGE OF BUFFER CONTAINING SECTOR
 3370 * CARRY SET IF ERROR
 3380 * CLOBBERS (A) AND (Y)
 3390 *--------------------------------
 3400 RTS
 3410 LDY #0
 3420 ASL TRACK*8
 3430 ASL
 3440 ASL
 3450 BCC .1 BLOCK < $100
 3460 INY BLOCK > $0FF
 3470 .1 ASL *2, MAKE ROOM FOR H/L FLAG BIT
 3480 ORA BLKTBL,X
 3490 ROR H/L BIT TO CARRY
 3500 STA BLOCK
 3510 STY BLOCK+1
 3520 LDX /BLOCK.BUFFER
 3530 BCC .2 LOWER HALF OF BLOCK
 3540 INX UPPER HALF OF BLOCK
 3550 .2 JSR $BF00
 3560 .DA #$80,PARMLIST
 3570 BCS .3 ...ERROR
 3580 RTS
 3590 .3 PHA SAVE ERROR CODE
 3600 LDY #EM5 "ERROR"
 3610 JSR PRINT.MSG
 3620 PLA
 3630 JSR MON.PRHEX DISPLAY CODE
 3640 JMP $8003 SOFTLY BACK TO S-C MACRO
 3650 *--------------------------------
 3660 SETUP.SCREEN
 3670 LDA #20 LINES PER SCREEN
 3680 STA LINE.COUNT
 3690 LDA #"A" START MENU WITH LETTER "A"
 3700 STA MENU.LETTER
 3710 JSR MON.CROUT THREE BLANK LINES
 3720 JSR MON.CROUT
 3730 JMP MON.CROUT RETURN THROUGH CROUT
 3740 *--------------------------------
 3750 * RETURN .CS. IF END OF LOAD
 3760 *--------------------------------
 3770 LOAD.FROM.SECTOR
 3780 LDA LPTR+1 IS THERE ROOM FOR
 3790 CMP HIMEM ANOTHER BYTE?

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 69 of 168

 3800 LDA LPTR+2
 3810 SBC HIMEM+1
 3820 BCS LFS2 NO, END OF LOAD
 3830 LDA (PNTR),Y
 3840 LPTR STA $5555
 3850 INC LPTR+1
 3860 BNE .1
 3870 INC LPTR+2
 3880 .1 INY
 3890 BNE LOAD.FROM.SECTOR
 3900 LFS2 RTS
 3910 *--------------------------------
 3920 EMS
 3930 EM0 .EQ *-EMS
 3940 .HS 8D
 3950 .AS -/TYPE LETTER TO LOAD A FILE,/
 3960 .HS 8D
 3970 .AS -/OR <SPACE> FOR MORE FILES,/
 3980 .HS 8D
 3990 .AS -/OR <RET> OR <ESC> TO ABORT: /
 4000 .HS 00
 4010 EM1 .EQ *-EMS
 4020 .HS 8D
 4030 .AS -/FILE IS EMPTY/
 4040 .HS 00
 4050 EM2 .EQ *-EMS
 4060 .HS 8D
 4070 .AS -/FILE IS TOO BIG/
 4080 .HS 00
 4090 EM3 .EQ *-EMS
 4100 .AS -/ SLOT: /
 4110 .HS 00
 4120 EM4 .EQ *-EMS
 4130 .HS 8D
 4140 .AS -/DRIVE: /
 4150 .HS 00
 4160 EM5 .EQ *-EMS
 4170 .HS 8D
 4180 .AS -/ERROR /
 4190 .HS 00
 4200 *--------------------------------
 4210 BLKTBL .HS 00.0E.0D.0C.0B.0A.09.08
 4220 .HS 07.06.05.04.03.02.01.0F
 4230 *--------------------------------
 4240 PARMLIST
 4250 .DA #3
 4260 UNIT .HS 60 DRIVE-1*8+SLOT*16
 4270 .DA BLOCK.BUFFER
 4280 BLOCK .DA 2
 4290 *--------------------------------
 4300 TRACKS .BS 21
 4310 SECTORS .BS 21

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 70 of 168

Multi-Level ProDOS Catalog

Bob Sander-Cederlof

July 1985

Last week I looked through some old piles of papers and came across a program by Greg
Seitz, dated Dec 20, 1983. It was attached to a set of ProDOS Tech Notes, and Greg
apparently worked at Apple at that time.

Greg's program lists the filenames of an entire ProDOS directory, showing the whole
tree. It shows directory files by printing a slash in front of the filename, and
shows the level by indenting. For example, a typical listing might look like this:

 PRODOS
 BASIC.SYSTEM
 /UTILITIES
 HELPER
 DOER
 /MORE
 WHATEVER
 AND.ANOTHER
 TEXT.FILE
 ANOTHER

A listing like this can be a big help in finding things on a large hard disk. The
program can also be extended in many ways. One that comes to mind immediately is to
print the rest of the CATALOG information as well as the file names. Another is to
create a complete CATALOG MANAGER utility, which would permit re-arranging the
filenames, promoting and demoting files, and so on.

I typed in Greg's program, and then I rewrote it. The listing that follows bears very
little resemblance to his code, but I do thank him for the help in getting started.

The program assumes a prefix has been set. If there is no prefix, you will get a beep
and no listing. If there is a prefix, and the directory named is online, the listing
will begin with that directory. Another enhancement would be to display the current
prefix, and allow accepting it or changing it before starting the filename listing.

If we were always starting with the volume directory, it would be a little easier.
The volume directory always starts in block 2. However, since we are able to start
with any directory, we do not know where it starts. ProDOS allows you to read a
directory, and we can get the first block of any directory by using MLI to open the
directory file.

Lines 1100-1120 read the current prefix into a buffer. The lines 1130-1150 open that
file. Although I have never seen it in the books, apparently OPEN also reads the
first block. After the OPEN call, BUFFER.ONE contains the first block of the
directory file. Unless we are willing to do a complete search without ProDOS's help,
this is the only way I know of to find the first block of a directory file (other
than the volume directory).

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 71 of 168

Since the only reason to OPEN the directory file was to read the first block, lines
1180-1200 close it again. If any of these MLI calls don't go through, line 1210 will
ring the alarm and stop.

Lines 1230-1260 start up the directory listing. The first block ONLY will be in
BUFFER.ONE. All subsequent blocks will be read into BUFFER.TWO. In order to make the
LIST.DIRECTORY program completely recursive, it is called with the buffer address in
a zero-page pointer. SETUP.NEXT.BLOCK also gets the next block pointer from the
buffer and saves it in NEXT.BLOCK.

LIST.DIRECTORY is really quite simple, in spite of its size. Its main function is to
print a list of filenames. Each filename is preceded by a number of blanks,
determined by NEST.LEVEL. NEST.LEVEL is incremented at line 1290, each time
LIST.DIRECTORY is called. If a file listed happens to be a directory file,
LIST.IDRECTORY saves all the pointers and counters on the stack and then calls
itself. When the subdirectory's files have all been listed, that recursive call of
LIST.DIRECTORY will return, the pointers and counters can be unstacked, and the
listing can continue.

The format of the information in a directory is detailed quite well in both "Beneath
Apple ProDOS" and "Apple ProDOS Advanced Features". (We recommend and sell both
books.) The first four bytes of each block are two block numbers: that of the
previous block, and that of the next block, in the same directory. This allows
scanning in both forward and reverse directions through a directory. We will only use
the next-block pointers in our program. After the block numbers there are 13
descriptors of 39 bytes each. The first descriptor in a directory describes the
directory itself, and the rest describe files.

For some reason Apple was not quite sure that it would always use 13 39-byte
descriptors, so they stored these two numbers in the directory descriptor. Anyone who
access a directory is supposed to look up these two numbers and use them, just in
case Apple decides to change them someday. The directory descriptor also contains an
active file count. When a file is deleted this count is decremented, but the file
descriptor remains. We use the active file count to determine when we reach the end
of a directory. Lines 1300-1360 pick up the bytes per descriptor, descriptors per
block, and active file count and save them.

Lines 1370-1450 set up PNTR to point at the first file descriptor, which follows the
directory header. CURRENT.ENTRY.NUMBER will count up to 13, so we will know when it
is time to read another block. We start at 2, because the first block uses the first
descriptor for the header. We also clear the file count.

Lines 1460-1500 check for the special case of an empty directory. If there are no
active files, we are finished.

Lines 1510-1750 print out the file name from the current file descriptor. The first
byte of a descriptor contains a code for the type of file in the first nybble, and
the length of the file name in the second nybble. If both are zero, the file has been
deleted. The other legal values are $1x, $2x, and $3x to signify a seedling, sapling,
or tree file, respectively; and $Dx to signify a directory file. All we care about is
whether is a directory file or not, and how long the file name is.

If it is a directory file, lines 1760-2100 will be executed. Lines 1760-1860 push the
counters and pointers on the stack. Lines 1870-1930 read in the first block of the
sub-directory. Line 1950 calls LIST.DIRECTORY to list the subdirectory. After it is
finished, line 1960 will decrement the nesting level. Lines 1970-2060 unstack the

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 72 of 168

pointers and counters. If we were still in the first block of the highest level
directory (where we started), we do not need to read the block again: it is still in
BUFFER.ONE. Otherwise, lines 2070-2100 read the block back in. If we did not care how
much memory we used, we could make this program a lot faster by using more buffers.
We could have a different buffer for each level, so that blocks would never have to
be re-read.

Lines 2110-2210 count the file just listed, and then check to see if our count is the
same as the active file count from the directory header. If so, we are finished.

If we are not finished, lines 2220-2290 bump the pointer into the directory block by
the size of a descriptor entry. If we are still in the same block, that is all that
we need to do. If not, lines 2350-2420 read in the next block and set things up for
it. Then it's back to the top again for the next file name!

We hope some time in the not-so-distant future to be able to write a complete catalog
manager program like I started to describe back at the beginning of this article.
Some of you are using Bill Morgan's CATALOG ARRANGER for DOS 3.3, and this would be
an equivalent utility for ProDOS. We're not quite ready yet, but this program is a
step in the right direction.

 1000 *SAVE S.RECURCAT
 1010 *--------------------------------
 1020 MLI .EQ $BF00
 1030 DEVNUM .EQ $BF30
 1040 BELL .EQ $FBDD
 1050 CROUT .EQ $FD8E
 1060 COUT .EQ $FDED
 1070 PNTR .EQ $EB AND EC
 1080 *--------------------------------
 1090 CAT
 1100 JSR MLI GET CURRENT PREFIX
 1110 .DA #$C7,P.PREFIX
 1120 BCS .1 ...ERROR
 1130 JSR MLI OPEN THE DIRECTORY
 1140 .DA #$C8,P.OPEN AND READ FIRST BLOCK
 1150 BCS .1 ...ERROR
 1160 LDA DEVNUM SET UP READ MLI BLOCK
 1170 STA R.DEVNUM
 1180 JSR MLI CLOSE THE DIRECTORY
 1190 .DA #$CC,P.CLOSE
 1200 BCC .2 ...NO ERROR
 1210 .1 JSR BELL INDICATE ERROR
 1220 RTS
 1230 .2 LDA #0 BUFFERS ON PAGE BOUNDARIES
 1240 STA NEST.LEVEL START AT TOP LEVEL
 1250 LDY /BUFFER.ONE POINT TO NEXT BLOCK
 1260 JSR SETUP.NEXT.BLOCK
 1270 *--------------------------------
 1280 LIST.DIRECTORY
 1290 INC NEST.LEVEL DROP TO NEXT LEVEL
 1300 *---GET DIR DATA-----------------
 1310 LDY #38
 1320 .1 LDA (PNTR),Y GET: BYTES.PER.ENTRY....35
 1330 STA BYTES.PER.ENTRY-35,Y ENTRIES.PER.BLOCK..36
 1340 DEY FILE.COUNT......37,38

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 73 of 168

 1350 CPY #35
 1360 BCS .1
 1370 *---POINT TO FIRST FILE NAME-----
 1380 LDA #2 SKIP OVER DIR HEADER
 1390 STA CURRENT.ENTRY.NUMBER
 1400 ASL A=4, CLEAR CARRY
 1410 ADC BYTES.PER.ENTRY
 1420 STA PNTR POINT AT FIRST NAME
 1430 LDA #0 START FILE COUNT
 1440 STA CURRENT.FILE.COUNT
 1450 STA CURRENT.FILE.COUNT+1
 1460 *---STOP IF NO ACTIVE FILES------
 1470 LDA ACTIVE.FILE.COUNT
 1480 ORA ACTIVE.FILE.COUNT+1
 1490 BNE .2 ...AT LEAST ONE FILE
 1500 RTS ...END OF DIRECTORY
 1510 *---PRINT FILE NAME--------------
 1520 .2 LDY #0 POINT TO TYPE/LENGTH
 1530 LDA (PNTR),Y
 1540 BEQ .8 0 = DELETED FILE
 1550 AND #$0F ISOLATE NAME LENGTH
 1560 TAX X = #CHARS IN NAME
 1570 LDY NEST.LEVEL NUMBER OF LEADING BLANKS
 1580 LDA #" "
 1590 .3 JSR COUT INDENT BY DIRECTORY LEVEL
 1600 DEY
 1610 BNE .3
 1620 LDA (PNTR),Y GET TYPE/LENGTH
 1630 PHA 1L, 2L, 3L, OR DL
 1640 BPL .4 ...NOT DIR FILE
 1650 LDA #"/" DIR FILE, PRINT A SLASH
 1660 JSR COUT
 1670 .4 INY PRINT THE FILE'S NAME
 1680 LDA (PNTR),Y
 1690 ORA #$80
 1700 JSR COUT
 1710 DEX
 1720 BNE .4
 1730 JSR CROUT
 1740 PLA GET TYPE/LENGTH AGAIN
 1750 BPL .7 ...NOT DIR FILE
 1760 *---PUSH DATA ON STACK-----------
 1770 LDA PNTR+1 SAVE POINTER IN CURRENT BLOCK
 1780 PHA
 1790 LDA PNTR
 1800 PHA SAVE: R.BLOCK
 1810 LDX #0 BYTES.PER.ENTRY
 1820 .5 LDA PUSH.VARS,X ENTRIES.PER.BLOCK
 1830 PHA ACTIVE.FILE.COUNT
 1840 INX CURRENT.FILE.COUNT
 1850 CPX #PUSH.COUNT CURRENT.ENTRY.NUMBER
 1860 BNE .5 NEXT.BLOCK
 1870 *---READ HEADER OF SUBDIR--------
 1880 LDY #$12 POINT AT KEYBLOCK POINTER
 1890 LDA (PNTR),Y GET HIGH BYTE
 1900 TAX

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 74 of 168

 1910 DEY
 1920 LDA (PNTR),Y GET LOW BYTE
 1930 JSR READ.NEXT.BLOCK
 1940 *---RECURSIVE CALL---------------
 1950 JSR LIST.DIRECTORY
 1960 DEC NEST.LEVEL POP TO HIGHER LEVEL
 1970 *---POP DATA OFF STACK-----------
 1980 LDX #PUSH.COUNT GET BLOCK OF VARS
 1990 .6 PLA
 2000 STA PUSH.VARS-1,X
 2010 DEX
 2020 BNE .6
 2030 PLA
 2040 STA PNTR GET KEYBLOCK POINTER
 2050 PLA
 2060 STA PNTR+1
 2070 CMP /BUFFER.TWO IS BLOCK IN BUFFER.TWO?
 2080 BCC .7 ...NO, DON'T NEED TO READ
 2090 JSR MLI ...YES, MUST READ THE BLOCK
 2100 .DA #$80,P.READ
 2110 *---COUNT THE FILE---------------
 2120 .7 INC CURRENT.FILE.COUNT
 2130 BNE .8
 2140 INC CURRENT.FILE.COUNT+1
 2150 *---SEE IF THAT WAS LAST FILE----
 2160 .8 LDA CURRENT.FILE.COUNT
 2170 CMP ACTIVE.FILE.COUNT
 2180 LDA CURRENT.FILE.COUNT+1
 2190 SBC ACTIVE.FILE.COUNT+1
 2200 BCC .9 ...NOT LAST FILE
 2210 RTS ...END OF DIRECTORY
 2220 *---ADVANCE PNTR TO NEXT ENTRY---
 2230 .9 CLC
 2240 LDA PNTR GET RESULT IN Y,X
 2250 ADC BYTES.PER.ENTRY
 2260 TAX
 2270 LDA PNTR+1
 2280 ADC #0
 2290 TAY
 2300 *---ARE WE STILL INSIDE BLOCK?---
 2310 LDA CURRENT.ENTRY.NUMBER
 2320 INC CURRENT.ENTRY.NUMBER
 2330 CMP ENTRIES.PER.BLOCK
 2340 BCC .10 ...INSIDE SAME BLOCK
 2350 *---READ NEXT BLOCK--------------
 2360 LDA NEXT.BLOCK
 2370 LDX NEXT.BLOCK+1
 2380 JSR READ.NEXT.BLOCK
 2390 LDA #1 START WITH FIRST ENTRY
 2400 STA CURRENT.ENTRY.NUMBER IN NEW BLOCK
 2410 LDX #4 SKIP OVER BLOCK NUMBERS
 2420 LDY /BUFFER.TWO
 2430 .10 STX PNTR NEW PNTR VALUE
 2440 STY PNTR+1
 2450 JMP .2 ...TO LIST NEXT FILENAME
 2460 *--------------------------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 75 of 168

 2470 READ.NEXT.BLOCK
 2480 STA R.BLOCK BLOCK # IN X,A
 2490 STX R.BLOCK+1
 2500 JSR MLI READ THE BLOCK
 2510 .DA #$80,P.READ
 2520 LDA #BUFFER.TWO WE USED BUFFER.TWO
 2530 LDY /BUFFER.TWO
 2540 SETUP.NEXT.BLOCK
 2550 STA PNTR PNTR FROM Y,A
 2560 STY PNTR+1
 2570 LDY #2 GET NEXT BLOCK #
 2580 LDA (PNTR),Y
 2590 STA NEXT.BLOCK
 2600 INY
 2610 LDA (PNTR),Y
 2620 STA NEXT.BLOCK+1
 2630 RTS RETURN
 2640 *--------------------------------
 2650 P.PREFIX .DA #1
 2660 .DA BUFFER.TWO
 2670 *--------------------------------
 2680 P.OPEN .DA #3
 2690 .DA BUFFER.TWO
 2700 OPENBUF .DA BUFFER.ONE
 2710 .DA #0
 2720 *--------------------------------
 2730 P.CLOSE .DA #1
 2740 .DA #0
 2750 *--------------------------------
 2760 P.READ .DA #3
 2770 R.DEVNUM .DA #$60
 2780 .DA BUFFER.TWO
 2790 PUSH.VARS .EQ *
 2800 R.BLOCK .DA 0
 2810 *--------------------------------
 2820 BYTES.PER.ENTRY .BS 1
 2830 ENTRIES.PER.BLOCK .BS 1
 2840 ACTIVE.FILE.COUNT .BS 2
 2850 CURRENT.FILE.COUNT .BS 2
 2860 CURRENT.ENTRY.NUMBER .BS 1
 2870 NEXT.BLOCK .BS 2
 2880 PUSH.COUNT .EQ *-PUSH.VARS
 2890 *--------------------------------
 2900 NEST.LEVEL .BS 1
 2910 *--------------------------------
 2920 WASTED .EQ *+255/256*256-*
 2930 .BS WASTED
 2940 *--------------------------------
 2950 BUFFER.ONE .BS 512
 2960 BUFFER.TWO .BS 512
 2970 *--------------------------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 76 of 168

Put DOS and ProDOS Files on Same Disk

Bob Sander-Cederlof

September 1985

In the February 1985 issue of AAL I showed how to create a DOS-less DOS 3.3 data
disk. Tracks 1 and 2, normally full of the DOS image, were instead made available for
files. Booting the disk gets you a message that such a disk cannot be booted.

Now that we are publishing more and more programs intended for use under ProDOS, we
foresee the need to publish Quarterly Disks that contain both DOS and ProDOS
programs. Believe it or not, this is really possible.

The DOS operating system keeps its Volume Table of Contents (VTOC) and catalog in
track $11. The VTOC is in sector 0 of that track, and the catalog normally fills the
rest of the track. A major part of the VTOC is the bit map, which shows which sectors
are as yet unused by any files. If we want to reserve some sectors for use by a
ProDOS directory on the same disk, we merely mark those sectors as already being in
use in the DOS bit map.

ProDOS keeps its directory and bit map all in track 0. This track is not available to
DOS for file storage anyway, so we can be comfortable stealing it for a ProDOS setup
on the same diskette.

I decided to keep things fairly simple, by splitting the disk into two parts purely
on a track basis. ProDOS gets some number of tracks starting with track 0, and DOS
gets all the tracks from just after ProDOS to track 34. If ProDOS gets more than 17
tracks, it will hop over track $11 (since DOS's catalog is there). Normally I will
split the disk in half, giving tracks 0-16 to ProDOS and tracks 17-34 to DOS. With
this arrangement, ProDOS thus starts with 129 free blocks, and DOS starts with 272
free sectors.

The program I wrote does not interact with the user; instead, you set all the options
by changing the source code and re-assembling. It would be nice to have an
interactive front end to get slot, drive, volume number for the DOS half, volume name
for the ProDOS half, and how many tracks to put in each half. Maybe we'll add this
stuff later, or maybe you would like to try your hand at it.

The parameters you might want to change are found in lines 1020-1050. You can see
that I started the DOS allocation at track $12, just after the catalog track. I also
chose volume 1, drive 1, slot 6. You can use any volume number from 1 to 254. Since
these numbers were under my control, I did not bother to check for legal values. If
we add an interactive front end, we will have to validate them. We might also want to
display the number of ProDOS blocks and DOS sectors that result from the
DOS.LOW.TRACK selection, maybe in a graphic format. You might even use a joystick or
mouse....

You might also want to change the ProDOS volume name. I am calling it "DATA". The
name is in line 2850. It can be up to 15 characters long, and the number of
characters must be stored in the right nybble of the byte just before the name. This
is automatically inserted for you, by the assembler. If you should try to assemble a
name larger than 15 characters, line 2870 will cause a RANGE ERROR. Another way of

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 77 of 168

changing the ProDOS volume name is to do so after initialization using the ProDOS
FILER program.

Lines 1090 and 1100 compute the number of free DOS sectors and ProDOS blocks. The
values are not used anywhere in the program, but are nice to know.

Line 1300 sets the program origin at $803. Why $803, and not $800? If we load and run
an assembly language program at $800, and then later try to load and run an Applesoft
program, Applesoft can get confused. Applesoft requires that $800 contain a $00
value, but it does not make sure it happens when you LOAD an Applesoft program from
the disk. By putting our program at $803 we make sure we don't kill the $00 and $800.
Well, then why not start at $801? I don't know, we just always did it that way. (It
would make good sense if our program started by putting $00 in $801 and $802,
indicating to Applesoft that it had no program in memory.)

DOUBLE.INIT is written to run under DOS 3.3, and makes calls on the RWTS subroutine
to format and write information on the disk. The entire DOUBLE.INIT program is driven
by lines 1320-1490. The flow is very straightforward:

 1. Format the disk as 35 empty tracks.
 2. Write DOS VTOC and Catalog in track 17.
 3. Write ProDOS Directory and bit map in track 0.
 4. Write "YOU CANNOT BOOT" code in boot sector.

Formatting a blank disk is simple, unless you have a modified DOS with the INIT
capability removed. Lines 1510-1590 set up a format call to RWTS, and fall into my
RWTS caller.

Lines 1600-1800 call RWTS and return, unless there was an error condition. If there
was an error, I will print out "RWTS ERROR" and the error code in hex. The error code
values you might see are:

 $08 -- Error during formatting
 $10 -- Trying to write on write protected disk
 $40 -- Drive error

I don't think you can get $20 (volume mismatch) or $80 (read error) from DOUBLE.INIT.
After printing the error message, DOS will be warm started, aborting DOUBLE.INIT.

Building the DOS VTOC and Catalog is handled by lines 1820- 2310. The beginning
section of the VTOC contains information about the number of tracks and sectors,
where to find the catalog, etc. This is all assembled in at lines 2260-2310, and is
copied into my buffer by lines 1880-1930. Since the volume number is a parameter, I
specially load it in with lines 1940 and 1950. The rest of the VTOC is a bit map
showing which sectors are not yet used. Lines 1960-2090 build this bit map. Lines
1840-1870 and 2100-2120 cause the VTOC image to be written on track 17 ($11) sector
0.

There are some unused bytes in the beginning part of the VTOC, so I decided to put
some private information in there. See line 2270 and line 2290.

The rest of track 17 is a series of empty linked sectors comprising the catalog. The
chain starts with sector $0F, and works backward to sector 1. Lines 2130-2240 build
each sector in turn and write it on the disk.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 78 of 168

The ProDOS directory and bit map are installed in track 0 by lines 2330-2900. This
gets a little tricky, because we are trying to write ProDOS blocks with DOS 3.3 RWTS.
Here is a correspondence table, showing the blocks and sectors in track 0:

 ProDOS Block: 0 1 2 3 4 5 6 7
 DOS 3.3 Sectors: 0,E D,C B,A 9,8 7,6 5,4 3,2 F,1

The first sector of each pair contains the first part of each block, and so on.

The ProDOS bit map goes in block 6, which is sectors 3 and 2. Even if we had an
entire diskette allocated to ProDOS the bit map would occupy very little of the first
of these two sectors. Since formatting the disk wrote 256 zeroes into every sector,
we can leave sector 2 unchanged. Lines 2700-2820 build the bit map data for sector 3
and write it out. Note that block 7 is available, all blocks in track 17 are
unavailable.

The ProDOS Directory starts in block 2. The first two bytes of a directory sector
point to the previous block in the directory chain, and the next two bytes point to
the following block in the chain. We follow the standard ProDOS convention of linking
blocks 3, 4, and 5 into the directory. Those three blocks contain no other
information, since there are as yet no filenames in the directory. Here's how the
chain links together:

 Previous Next
 Block Block
 Block 2: 0 3 (zero means the beginning)
 Block 3: 2 4
 Block 4: 3 5
 Block 5: 4 0 (zero means the end)

Block 2 gets some extra information, the volume header. Lines 2840-2900 contain the
header data, which is copied into my buffer by lines 2590-2630.

The no-booting boot program is shown in lines 3000-3190. This is coded as a .PHase at
$800 (see lines 3010 and 3190), since the disk controller boot ROM will load it at
that address. All the program does is turn off the disk motor and print out a little
message. Lines 1410-1490 write this program on track 0 sector 0.

I think if you really wanted to you could put a copy of the ProDOS boot program in
block 0 (sectors 0 and E). Then if you copied the file named PRODOS into the ProDOS
half of the disk, you could boot ProDOS.

There is one thing to look out for if you start cranking out DOUBLE DISKS. There are
some utility programs in existence which are designed to "correct" the DOS bitmap in
the VTOC sector. Since these programs have never heard of ProDOS, let alone of DOUBLE
DISKS, they are going to tell DOS that all those tracks we carefully gave to ProDOS
belong to DOS. If you let that happen to a disk on which you have already stored some
ProDOS files, zzzaaaapppp!

 1000 *SAVE S.INIT DOS & PRODOS
 1010 *--------------------------------
 1020 DOS.LOW.TRACK .EQ $12 DOS $12...$22
 1030 DOS.VOLUME .EQ 1
 1040 SLOT .EQ 6
 1050 DRIVE .EQ 1
 1060 *--------------------------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 79 of 168

 1070 PRODOS.MAX.BLOCKS .EQ DOS.LOW.TRACK*8
 1080 *--------------------------------
 1090 ACTUAL.DOS.SECTORS .EQ DOS.LOW.TRACK>$11+34-DOS.LOW.TRACK*16
 1100 ACTUAL.PRODOS.BLOCKS .EQ DOS.LOW.TRACK<$12+DOS.LOW.TRACK-2*8+1
 1110 *--------------------------------
 1120 DOS.WARM.START .EQ $03D0
 1130 RWTS .EQ $03D9
 1140 GETIOB .EQ $03E3
 1150 *--------------------------------
 1160 R.PARMS .EQ $B7E8
 1170 R.SLOT16 .EQ $B7E9
 1180 R.DRIVE .EQ $B7EA
 1190 R.VOLUME .EQ $B7EB
 1200 R.TRACK .EQ $B7EC
 1210 R.SECTOR .EQ $B7ED
 1220 R.BUFFER .EQ $B7F0,B7F1
 1230 R.OPCODE .EQ $B7F4
 1240 R.ERROR .EQ $B7F5
 1250 *--------------------------------
 1260 MON.CROUT .EQ $FD8E
 1270 MON.PRBYTE .EQ $FDDA
 1280 MON.COUT .EQ $FDED
 1290 *--------------------------------
 1300 .OR $803
 1310 *--------------------------------
 1320 DOUBLE.INIT
 1330 JSR FORMAT.35.TRACKS
 1340 LDA #INIT.BUFFER
 1350 STA R.BUFFER
 1360 LDA /INIT.BUFFER
 1370 STA R.BUFFER+1
 1380 JSR BUILD.DOS.CATALOG
 1390 JSR BUILD.PRODOS.CATALOG
 1400 *---WRITE BOOT PROGRAM-----------
 1410 LDA #BOOTER
 1420 STA R.BUFFER
 1430 LDA /BOOTER
 1440 STA R.BUFFER+1
 1450 JSR CLEAR.INIT.BUFFER
 1460 LDA #0
 1470 STA R.TRACK
 1480 STA R.SECTOR
 1490 JMP CALL.RWTS
 1500 *--------------------------------
 1510 FORMAT.35.TRACKS
 1520 LDA #SLOT*16
 1530 STA R.SLOT16
 1540 LDA #DRIVE
 1550 STA R.DRIVE
 1560 LDA #DOS.VOLUME
 1570 STA R.VOLUME
 1580 STA V.VOLUME
 1590 LDA #$04 INIT OPCODE FOR RWTS
 1600 CALL.RWTS.OP.IN.A
 1610 STA R.OPCODE
 1620 CALL.RWTS

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 80 of 168

 1630 JSR GETIOB
 1640 JSR RWTS
 1650 BCS .1 ERROR
 1660 RTS
 1670 .1 LDY #0 PRINT "ERROR"
 1680 .2 LDA ERMSG,Y
 1690 BEQ .3
 1700 JSR MON.COUT
 1710 INY
 1720 BNE .2 ...ALWAYS
 1730 .3 LDA R.ERROR GET ERROR CODE
 1740 JSR MON.PRBYTE
 1750 JSR MON.CROUT
 1760 JMP DOS.WARM.START
 1770 *--------------------------------
 1780 ERMSG .HS 8D87
 1790 .AS -/RWTS ERROR /
 1800 .HS 00
 1810 *--------------------------------
 1820 BUILD.DOS.CATALOG
 1830 JSR CLEAR.INIT.BUFFER
 1840 LDA #17
 1850 STA R.TRACK
 1860 LDA #0
 1870 STA R.SECTOR
 1880 *---BUILD GENERIC VTOC-----------
 1890 LDY #VTOC.SZ-1
 1900 .0 LDA VTOC,Y
 1910 STA INIT.BUFFER,Y
 1920 DEY
 1930 BPL .0
 1940 LDA #DOS.VOLUME
 1950 STA V.VOLUME
 1960 *---PREPARE BITMAP---------------
 1970 LDY #4*34
 1980 LDA #$FF
 1990 .1 CPY #4*17 ARE WE ON CATALOG TRACK?
 2000 BEQ .2
 2010 CPY #4*DOS.LOW.TRACK
 2020 BCC .3 IN PRODOS ARENA
 2030 STA V.BITMAP+1,Y
 2040 STA V.BITMAP,Y
 2050 .2 DEY
 2060 DEY
 2070 DEY
 2080 DEY
 2090 BNE .1
 2100 *---WRITE VTOC ON NEW DISK-------
 2110 .3 LDA #2 RWTS WRITE OPCODE
 2120 JSR CALL.RWTS.OP.IN.A
 2130 *---WRITE CATALOG CHAIN----------
 2140 JSR CLEAR.INIT.BUFFER
 2150 LDA #17 TRACK 17
 2160 LDY #15 START IN SECTOR 15
 2170 STA C.TRACK
 2180 .4 STY R.SECTOR

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 81 of 168

 2190 DEY
 2200 STY C.SECTOR
 2202 BNE .5
 2203 STY C.TRACK TERMINATE THE CHAIN
 2210 .5 JSR CALL.RWTS
 2220 LDY C.SECTOR
 2230 BNE .4
 2240 RTS
 2250 *--------------------------------
 2260 VTOC .HS 04.11.0F.03.00.00.01
 2270 .AS "COMBINATION DOS/PRODOS DATA DISK"
 2280 .HS 7A
 2290 .AS /07-25-85/
 2300 .HS 11.01.00.00.23.10.00.01
 2310 VTOC.SZ .EQ *-VTOC
 2320 *--------------------------------
 2330 BUILD.PRODOS.CATALOG
 2340 LDA #0
 2350 STA R.TRACK
 2360 JSR CLEAR.INIT.BUFFER
 2370 *--------------------------------
 2380 LDA #5 SECTOR 5 = BLOCK 5
 2390 STA R.SECTOR BACK LINK = 0004
 2400 LDA #4 FWD LINK = 0000
 2410 STA INIT.BUFFER
 2420 JSR CALL.RWTS
 2430 *--------------------------------
 2440 LDA #7 SECTOR 7 = BLOCK 4
 2450 STA R.SECTOR BACK LINK = 0003
 2460 DEC INIT.BUFFER FWD LINK = 0005
 2470 LDA #5
 2480 STA INIT.BUFFER+2
 2490 JSR CALL.RWTS
 2500 *--------------------------------
 2510 LDA #9 SECTOR 9 = BLOCK 3
 2520 STA R.SECTOR BACK LINK = 0002
 2530 DEC INIT.BUFFER FWD LINK = 0004
 2540 DEC INIT.BUFFER+2
 2550 JSR CALL.RWTS
 2560 *--------------------------------
 2570 LDA #11 SECTOR 11 = BLOCK 2
 2580 STA R.SECTOR BACK LINK = 0000
 2590 LDY #HDR.SZ-1 FWD LINK = 0003
 2600 .1 LDA HEADER,Y
 2610 STA INIT.BUFFER,Y GET VOLUME HEADER
 2620 DEY
 2630 BPL .1
 2640 LDA #PRODOS.MAX.BLOCKS
 2650 STA INIT.BUFFER+$29
 2660 LDA /PRODOS.MAX.BLOCKS
 2670 STA INIT.BUFFER+$2A
 2680 JSR CALL.RWTS
 2690 *--------------------------------
 2700 LDA #3
 2710 STA R.SECTOR
 2720 JSR CLEAR.INIT.BUFFER

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 82 of 168

 2730 LDA #$FF
 2740 LDY #DOS.LOW.TRACK-1
 2750 .2 CPY #17 SKIP OVER DOS CATALOG TRACK
 2760 BEQ .3
 2770 STA INIT.BUFFER,Y
 2780 .3 DEY
 2790 BPL .2
 2800 LDA #1 MAKE ONLY BLOCK 7 AVAILABLE
 2810 STA INIT.BUFFER IN TRACK 0
 2820 JMP CALL.RWTS
 2830 *--------------------------------
 2840 HEADER .DA 0,3,#$F0+VNSZ
 2850 VN .AS /DATA/
 2860 VNSZ .EQ *-VN
 2870 .BS 15-VNSZ
 2880 .HS 00.00.00.00.00.00.00.00.00.00.00.00
 2890 .HS 00.00.C3.27.0D.00.00.06.00.08.00
 2900 HDR.SZ .EQ *-HEADER
 2910 *--------------------------------
 2920 CLEAR.INIT.BUFFER
 2930 LDY #0
 2940 TYA
 2950 .1 STA INIT.BUFFER,Y
 2960 INY
 2970 BNE .1
 2980 RTS
 2990 *--------------------------------
 3000 BOOTER
 3010 .PH $800
 3020 BOOTER.PHASE
 3030 .HS 01
 3040 LDA $C088,X MOTOR OFF
 3050 LDY #0
 3060 .1 LDA MESSAGE,Y
 3070 BEQ .2
 3080 JSR $FDF0
 3090 INY
 3100 BNE .1
 3110 .2 JMP $FF59
 3120 *--------------------------------
 3130 MESSAGE
 3140 .HS 8D8D8787
 3150 .AS -"COMBINATION DOS/PRODOS DATA DISK"
 3160 .HS 8D8D8787
 3170 .AS -/NO DOS IMAGE ON THIS DISK/
 3180 .HS 8D8D00
 3190 .EP
 3200 *--------------------------------
 3210 INIT.BUFFER .BS 256
 3220 *--------------------------------
 3230 V.VOLUME .EQ INIT.BUFFER-$BB+$C1
 3240 V.BITMAP .EQ INIT.BUFFER-$BB+$F3
 3250 *--------------------------------
 3260 C.TRACK .EQ INIT.BUFFER+1
 3270 C.SECTOR .EQ INIT.BUFFER+2
 3280 *--------------------------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 83 of 168

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 84 of 168

ProDOS Snooper

Bob Sander-Cederlof

October 1985

This past week I have been working on a project which involved creating a new device
driver for a disk-like device. In the process of debugging my driver, I had to write
a "snooper" program.

By "snooper", I mean a program which will make a list of all calls to the driver,
recording the origin of the call and the parameters of the call.

ProDOS keeps a table of the addresses of the device drivers assigned to each slot and
drive between $BF10 and $BF2F. There are two bytes for each slot and drive. $BF10-1F
is for drive 1, and $BF20-2F is for drive 2. For example, the address of the device
driver for slot 6 drive 1 is at $BF1C,1D. (Normally this address is $D000.)

I have a Sider drive in slot 7. The device driver address for the Sider is $C753, and
is kept at $BF1E,1F and $BF2E,2F.

By patching the device driver address to point to my own code, I can get control
whenever ProDOS tries to read or write or whatever. If I save and restore all the
registers, and jump to the REAL device driver after I am finished, ProDOS will never
be the wiser. But I will!

While my program has control, I can capture all the information I am interested in.
Unfortunately I cannot print it out at this time, because if I try to ProDOS will get
stuck in a loop. Instead I will save the data in a buffer so I can look at it later.

The program which follows has three distinct parts. Lines 1140-1290 are an
installation and removal tool. If the program has just been BLOADed or LOADed and
ASMed, running INSTALL.SNOOPER will (you guessed it!) install the snooper. The actual
device driver address for the slot (which you specified in line 1060 before
assembling the program) will be saved in my two-byte variable DRIVER. The previous
contents of DRIVER, which is the address of my snoop routine, will be copied into
ProDOS's table. The value of DRIVES, which you specified before assembling the
program at line 1070, will determine whether SNOOPER is connected to drive 2 or not.
It will always be connected to drive 1.

If SNOOPER has already been installed, running INSTALL.SNOOPER will reverse the
installation process, returning ProDOS to its original state. INSTALL.SNOOPER also
resets the buffer I use to keep the captured information. To make it easy to run
INSTALL.SNOOPER, I put a JMP to it at $300. After assembly you can type "$300G" to
install the snooper, and type the same again to dis-install it.

The JMP at $303 (line 1120) goes to the display program. After SNOOPER has been
installed, all disk accesses on the installed slot will cause information to be
accumulated in BUFFER. Typing "$303G" will cause the contents of BUFFER to be
displayed in an easy-to-read format.

I set up SNOOPER to capture eight bytes of information each time it is activated. You
might decide to save more or less. I save the return address from the stack, to get
some idea of which routine inside ProDOS is trying to access the disk. I also save

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 85 of 168

the six bytes at $42-47, which are the calling parameters for the device driver. Page
6-8 of Beneath Apple ProDOS describes these parameters; you can also find out about
them in Apple's ProDOS Technical Reference Manual and in Gary Little's "Apple ProDOS-
-Advanced Features".

$42 contains the command code: 00=status, 01=read, 02=write, and 03=format. $43
contains the unit number, in the format DSSS0000 (where SSS=slot and D=0 for drive 1,
D=1 for drive 2). $44-45 contain the address of the memory buffer, lo-byte first; the
buffer is 512 bytes long. $46-47 contain the block number to be read or written.

My DISPLAY program displays each group of eight bytes on a separate line, in the
following format:

 hhll:cc.uu.buff.blok

where hhll is the return address from the stack, hi-byte first; cc is the command
code; uu is the unit number; buff is the buffer address, hi-byte first; blok is the
block number, hi-byte first.

If you get into figuring out more of what ProDOS is doing, you might want to save
more information from the stack. You can look behind the immediate return address to
get more return addresses and other data which have been saved on the stack before
calling the device driver.

A word of explanation about lines 1040, 1360, 1370, 1490, and 1500. Line 1040 tells
the S-C Macro Assembler that it is OK to assemble opcodes legal in the 65C02. The
PHX, PHY, PLX and PLY opcodes are in the 65C02, 65802, and 65816; however, they are
not in the 6502. If you have only the 6502 in your Apple, you will need to substitute
the longer code shown in the comments. Leave out line 1040, and use the following:

 1360 TYA
 1365 PHA
 1370 TXA
 1375 PHA
 .
 .
 .
 1490 PLA
 1495 TAX
 1500 PLA
 1505 TAY

In the process of "snooping" I was able to debug my new device drivers for the
project I was developing. I also discovered what appear to be some gross in-
efficiencies in ProDOS. In the course of even simple CATALOGs, LOADs, and SAVEs the
same blocks are read into the same buffers over and over, at times when it would
appear to be totally unnecessary. If there was some mechanism inside MLI to keep
track of the fact that a complete un-spoiled copy of a particular block was already
in RAM, it could save a lot of time. On the other hand, it could be that the current
approach is safer. I think it is a potentially fruitful area for further
investigation. Any takers?

 1010 *SAVE PRODOS.SNOOPER
 1020 *--------------------------------
 1030 .OR $300
 1040 .OP 65C02 (If you have one)

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 86 of 168

 1050 *--------------------------------
 1060 SLOT .EQ 6
 1070 DRIVES .EQ 2
 1080 *--------------------------------
 1090 BUFFER .EQ $800
 1100 *--------------------------------
 1110 A300 JMP INSTALL.SNOOPER
 1120 A303 JMP DISPLAY
 1130 *--------------------------------
 1140 INSTALL.SNOOPER
 1150 LDX #1
 1160 .1 LDA 2*SLOT+$BF10,X
 1170 PHA SAVE CURRENT DRIVER ADDRESS
 1180 LDA DRIVER,X INSTALL NEW DRIVER ADDRESS
 1190 STA 2*SLOT+$BF10,X
 1200 .DO DRIVES=2
 1210 STA 2*SLOT+$BF20,X
 1220 .FIN
 1230 PLA REMEMBER OLD DRIVER
 1240 STA DRIVER,X
 1250 LDA BUFFER.ADDR,X
 1260 STA A+1,X
 1270 DEX
 1280 BPL .1 NOW THE OTHER BYTE
 1290 RTS
 1300 *--------------------------------
 1310 DRIVER .DA SNOOPER
 1320 BUFFER.ADDR .DA BUFFER
 1330 *--------------------------------
 1340 SNOOPER
 1350 PHA
 1360 PHY (If no 65C02 use TYA, PHA)
 1370 PHX (If no 65C02 use TXA, PHA)
 1380 TSX
 1390 LDA $104,X LO-BYTE OF RETURN ADDR
 1400 JSR STORE.BYTE
 1410 LDA $105,X HI-BYTE OF RETURN ADDR
 1420 JSR STORE.BYTE
 1430 LDX #0 $42...47
 1440 .1 LDA $42,X WHICH ARE THE PARAMETERS
 1450 JSR STORE.BYTE FOR THE CALL
 1460 INX
 1470 CPX #6
 1480 BCC .1
 1490 PLX (If no 65C02 use PLA, TAX)
 1500 PLY (If no 65C02 use PLA, TAY)
 1510 PLA
 1520 JMP (DRIVER) CONTINUE IN DRIVER
 1530 *--------------------------------
 1540 STORE.BYTE
 1550 A STA BUFFER THIS ADDRESS IS MODIFIED
 1560 INC A+1 BUMP PNTR TO NEXT ADDRESS
 1570 BNE .1
 1580 INC A+2
 1590 .1 RTS
 1600 *--------------------------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 87 of 168

 1610 COUT .EQ $FDED
 1620 CROUT .EQ $FD8E
 1630 PRBYTE .EQ $FDDA
 1640 PNTR .EQ $00,01
 1650 *--------------------------------
 1660 DISPLAY
 1670 LDA #BUFFER SET UP PNTR INTO BUFFER
 1680 STA PNTR
 1690 LDA /BUFFER
 1700 STA PNTR+1
 1710 *---CHECK IF FINISHED------------
 1720 .1 LDA PNTR
 1730 CMP A+1
 1740 LDA PNTR+1
 1750 SBC A+2
 1760 BCC .2
 1770 RTS
 1780 *---DISPLAY NEXT 8 BYTES---------
 1790 .2 LDY #1
 1800 JSR WORD DISPLAY RETURN ADDRESS
 1810 LDA #":" "XXXX:"
 1820 JSR COUT
 1830 JSR BYTE DISPLAY ($42)=OPCODE
 1840 JSR BYTE DISPLAY ($43)=UNIT NUMBER
 1850 INY
 1860 JSR WORD DISPLAY ($44,45)=BUFFER ADDR
 1870 JSR DOT
 1880 JSR WORD DISPLAY ($46,47)=BLOCK NUMBER
 1890 JSR CROUT CARRIAGE RETURN
 1900 LDA PNTR ADVANCE PNTR TO NEXT
 1910 CLC GROUP OF 8 BYTES
 1920 ADC #8
 1930 STA PNTR
 1940 BCC .1
 1950 INC PNTR+1
 1960 BNE .1 ...ALWAYS
 1970 *--------------------------------
 1980 WORD LDA (PNTR),Y DISPLAY HI-BYTE
 1990 JSR PRBYTE
 2000 DEY DISPLAY LO-BYTE
 2010 LDA (PNTR),Y
 2020 INY
 2030 INY ADVANCE INDEX
 2040 JMP PRBYTE
 2060 *--------------------------------
 2070 BYTE LDA (PNTR),Y DISPLAY BYTE
 2080 JSR PRBYTE
 2090 DOT LDA #"." PRINT "."
 2100 INY ADVANCE INDEX
 2110 JMP COUT
 2120 *--------------------------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 88 of 168

An Easier QUIT from ProDOS

Mark Jackson
Chicago, IL

November 1985

When using a hard disk with ProDOS it is often useful to use the MLI QUIT call to go
from one application to another. However, if you are deep within a subdirectory the
QUIT code makes you retype the entire Prefix if you want to shorten it. To allow the
use of the right arrow during the QUIT call do the following:

UNLOCK PRODOS
BLOAD PRODOS,A$2000,TSYS
CALL-151
5764:75 (for ProDOS 1.1.1 -- use 5964 for 1.0.1)
BSAVE PRODOS,A$2000,TSYS
LOCK PRODOS

This changes the input call to $FD75 which allows right arrow input. There is one
drawback: now to restore the prompted prefix you must press ESCape when asked for the
Pathname of the next application.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 89 of 168

Commented Listing of ProDOS QUIT Code

Bob Sander-Cederlof

November 1985

After reading Mark Jackson's article on improving the ProDOS QUIT code, I though it
would be nice to have a commented listing of that program. The listing which follows
is just that.

The ProDOS QUIT code is booted into $D100-D3FF in the alternate $D000 bank (the one
you get by diddling $C083). Normally ProDOS MLI stays in the $C08B side. When a
program issues the QUIT call (MLI code $65), the contents of $D100-D3FF are copied to
$1000-12FF; then ProDOS jumps to $1000.

If you BLOAD the SYS file named PRODOS from a bootable ProDOS 1.1.1 disk, and examine
it, you will find that it is laid out in eight parts. The first part is a relocator,
which copies the other seven parts into their normal homes. Like this:

 Position Position
 as loaded copied to

 2000-29FF --- Relocator
 2A00-2BFF Aux 200-3FF /RAM/ driver
 2C00-2C7F FF00-FF7F /RAM/ driver
 2C80-2CFF nowhere All zeroes
 2D00-4DFF D000-F0FF MLI Kernel
 4E00-4EFF BF00-BFFF System Global Page
 4F00-4F7F D742-D7BD Thunderclock driver
 4F80-4FFF FF80-FFFF Interrupt Code
 5000-56FF F800-FEFF Device Drivers
 5700-59FF D100-D3FF(alt) QUIT Code
 zeroes F100-F7FF

The part I am interested in right now is the QUIT code, which is at $5700-$59FF in
the PRODOS file.

The QUIT code is not written very efficiently. For some reason, there are two
completely separate editing programs: one for the prefix, and another for the
pathname. (And as Mark points out, neither one is very handy.) Even the code that
initializes the BITMAP is inefficient.

 1000 *SAVE S.PRODOS.QUIT
 1010 *--------------------------------
 1020 CH .EQ $24
 1030 CV .EQ $25
 1040 ERRCOD .EQ $DE
 1050 *--------------------------------
 1060 BUF .EQ $0280
 1070 *--------------------------------
 1080 SYSTEM .EQ $2000
 1090 *--------------------------------
 1100 MLI .EQ $BF00
 1110 BITMAP .EQ $BF58

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 90 of 168

 1120 *--------------------------------
 1130 KEY .EQ $C000
 1140 S80STOREOFF .EQ $C000
 1150 S80OFF .EQ $C00C
 1160 SALTON .EQ $C00F
 1170 STROBE .EQ $C010
 1180 ROM .EQ $C082
 1190 *--------------------------------
 1200 HOME .EQ $FC58
 1210 CLREOL .EQ $FC9C
 1220 RDKEY .EQ $FD0C
 1230 CROUT .EQ $FD8E
 1240 COUT .EQ $FDED
 1250 SETKBD .EQ $FE89
 1260 SETVID .EQ $FE93
 1270 BELL .EQ $FF3A
 1280 *--------------------------------
 1290 .MA MLI
 1300 JSR MLI
 1310 .DA #$]1,]2
 1320 .EM
 1330 *--------------------------------
 1340 .OR $1000
 1350 .TA $5700
 1360 *--------------------------------
 1370 PRODOS.QUIT
 1380 LDA ROM TURN ON THE MONITOR ROM
 1390 JSR SETVID GET BACK TO GOOD OLD-FASHIONED
 1400 JSR SETKBD DOWN-HOME 40 COLUMN DISPLAY
 1410 STA S80OFF
 1420 STA SALTON Know what I mean, Vern?
 1430 STA S80STOREOFF
 1440 *---PREPARE BITMAP---------------
 1450 LDX #$17
 1460 LDA #1 Mark $BFxx in use
 1470 STA BITMAP,X
 1480 DEX
 1490 LDA #0 Most pages are free
 1500 .1 STA BITMAP,X
 1510 DEX
 1520 BPL .1
 1530 LDA #$CF $0000-01FF, $0400-07FF in use
 1540 STA BITMAP
 1550 *---DISPLAY PREFIX---------------
 1560 GET.PREFIX
 1570 JSR HOME
 1580 JSR CROUT
 1590 LDA #Q.PRFX
 1600 STA MSG.ADDR
 1610 LDA /Q.PRFX
 1620 STA MSG.ADDR+1
 1630 JSR PRINT.MESSAGE
 1640 LDA #3 VTAB 4
 1650 STA CV
 1660 JSR CROUT MAKE IT 5
 1670 >MLI C7,PREFIX.PARM

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 91 of 168

 1680 LDX BUF # CHARS IN PREFIX
 1690 LDA #0 MARK END OF PREFIX WITH 00
 1700 STA BUF+1,X SO OUR MESSAGE PRINTER WILL
 1710 LDA #BUF+1 PRINT IT.
 1720 STA MSG.ADDR
 1730 LDA /BUF+1
 1740 STA MSG.ADDR+1
 1750 JSR PRINT.MESSAGE
 1760 *---GET NEW PREFIX---------------
 1770 LDX #0
 1780 DEC CV MOVE CURSOR TO BEGINNING OF LINE
 1790 JSR CROUT
 1800 NEXT.PREFIX.CHAR
 1810 JSR RDKEY
 1820 CMP #$8D
 1830 BEQ SET.NEW.PREFIX ...ACCEPT WHAT IS ON SCREEN
 1840 PHA ERASE PREFIX FROM SCREEN
 1850 JSR CLREOL
 1860 PLA
 1870 CMP #$9B IS CHAR <ESCAPE>?
 1880 BEQ GET.PREFIX ...YES, START ALL OVER
 1890 CMP #$98 IS CHAR CTRL-X?
 1900 START.PREFIX.OVER
 1910 BEQ GET.PREFIX ...START ALL OVER
 1920 CMP #$89 IS CHAR <TAB>?
 1930 BEQ .3 ...YES, RING BELL
 1940 CMP #$88 IS CHAR BACKSPACE?
 1950 BNE .2 ...NO, APPEND TO LINE
 1960 CPX #0 ...BACKSPACE, UNLESS AT BEGINNING
 1970 BEQ .1 AT BEGINNING ALREADY
 1980 DEC CH BACK UP
 1990 DEX
 2000 .1 JSR CLREOL CHOP OFF AFTER CURSOR
 2010 JMP NEXT.PREFIX.CHAR
 2020 .2 BCS .4 OTHER CONTROL CHAR < $88
 2030 .3 JSR BELL
 2040 JMP NEXT.PREFIX.CHAR
 2050 .4 CMP #"Z"+1
 2060 BCC .5 ...NOT LOWER CASE
 2070 AND #$DF CONVERT LOWER CASE TO UPPER
 2080 .5 CMP #"." ALLOW PERIOD, SLASH, DIGITS
 2090 BCC .3 ...TOO SMALL
 2100 CMP #"Z"+1 ALLOW LETTERS
 2110 BCS .3 ...TOO LARGE
 2120 CMP #"9"+1
 2130 BCC .6 ...PERIOD, SLASH, OR DIGIT
 2140 CMP #"A"
 2150 BCC .3 ...NOT A LEGAL CHARACTER
 2160 .6 INX
 2170 CPX #$27
 2180 BCS START.PREFIX.OVER ...TOO LONG
 2190 STA BUF,X
 2200 JSR COUT ECHO THE CHARACTER
 2210 JMP NEXT.PREFIX.CHAR
 2220 *--------------------------------
 2230 SET.NEW.PREFIX

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 92 of 168

 2240 CPX #0 DID WE CHANGE IT?
 2250 BEQ GET.PATHNAME ...NO
 2260 STX BUF ...YES, SO TELL SYSTEM
 2270 >MLI C6,PREFIX.PARM
 2280 BCC GET.PATHNAME ...NO ERRORS
 2290 JSR BELL DING, DONG!
 2300 LDA #0 SET .EQ. STATUS
 2310 PFXOVR BEQ START.PREFIX.OVER ...ALWAYS
 2320 *--------------------------------
 2330 GET.PATHNAME
 2340 JSR HOME
 2350 START.PATHNAME.OVER
 2360 JSR CROUT
 2370 LDA #Q.PATH
 2380 STA MSG.ADDR
 2390 LDA /Q.PATH
 2400 STA MSG.ADDR+1
 2410 JSR PRINT.MESSAGE
 2420 LDA #3 VTAB 4
 2430 STA CV
 2440 JSR CROUT MAKE IT 5
 2450 LDX #0
 2460 NEXT.PATHNAME.CHAR
 2470 LDA #$FF CURSOR CHARACTER
 2480 JSR COUT
 2490 DEC CH BACK UP OVER CURSOR
 2500 .1 LDA KEY
 2510 BPL .1 ...WAIT TILL KEY PRESSED
 2520 STA STROBE
 2530 CMP #$9B <ESCAPE>?
 2540 BNE .2 ...NO
 2550 LDA CH IF AT BEGINNING, GET PREFIX OVER
 2560 BNE GET.PATHNAME ...ELSE GET PATHNAME OVER
 2570 BEQ PFXOVR
 2580 .2 CMP #$98 CONTROL-X?
 2590 .3 BEQ GET.PATHNAME
 2600 CMP #$89 TAB KEY?
 2610 BEQ .5 ...YES
 2620 CMP #$88 BACKSPACE?
 2630 BNE .4 ...NO
 2640 JMP BACKSPACE.IN.PATHNAME
 2650 *--------------------------------
 2660 .4 BCS .6
 2670 .5 JSR BELL ...INVALID CHAR, RING BELL
 2680 JMP NEXT.PATHNAME.CHAR
 2690 *--------------------------------
 2700 .6 CMP #$8D
 2710 BEQ SET.NEW.PATHNAME
 2720 CMP #"Z"+1
 2730 BCC .7
 2740 AND #$DF CHANGE LOWER CASE TO UPPER
 2750 .7 CMP #"." ACCEPT DOT, SLASH, OR DIGIT
 2760 BCC .5 ...TOO SMALL
 2770 CMP #"Z"+1 ACCEPT LETTERS
 2780 BCS .5 ...TOO LARGE
 2790 CMP #"9"+1

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 93 of 168

 2800 BCC .8 ...DOT, SLASH, OR DIGIT
 2810 CMP #"A"
 2820 BCC .5 ...NOT A VALID CHARACTER
 2830 .8 PHA CLEAR BEYOND THIS POINT
 2840 JSR CLREOL
 2850 PLA
 2860 JSR COUT ECHO THE NEW CHARACTER
 2870 INX
 2880 CPX #$27
 2890 BCS .3 ...NAME TOO LONG
 2900 STA BUF,X APPEND CHAR TO NAME
 2910 JMP NEXT.PATHNAME.CHAR
 2920 *--------------------------------
 2930 SET.NEW.PATHNAME
 2940 LDA #" "
 2950 JSR COUT
 2960 STX BUF
 2970 >MLI C4,FILE.INFO.PARM
 2980 BCC .1 ...NO ERRORS
 2990 JMP PROCESS.ERROR
 3000 *--------------------------------
 3010 .1 LDA FILTYP FILE.INFO.PARM+4
 3020 CMP #$FF
 3030 BEQ .2 "SYS" FILE
 3040 LDA #1
 3050 JMP PROCESS.ERROR
 3060 *--------------------------------
 3070 .2 LDA #0
 3080 STA CL.REF CLOSE.PARM+1, REF NO.
 3090 >MLI CC,CLOSE.PARM
 3100 BCC .3 ...NO ERROR
 3110 JMP PROCESS.ERROR
 3120 *--------------------------------
 3130 .3 LDA ACBITS FILE.INFO.PARM+3
 3140 AND #1
 3150 BNE .4 ...OKAY TO READ IT
 3160 LDA #$27
 3170 JMP PROCESS.ERROR
 3180 *--------------------------------
 3190 .4 >MLI C8,OPEN.PARM
 3200 BCC .5 ...NO ERRORS
 3210 JMP PROCESS.ERROR
 3220 *--------------------------------
 3230 .5 LDA OP.REF OPEN.PARM+5, REF NO.
 3240 STA RD.REF READ.PARM+1, REF NO.
 3250 STA EF.REF EOF.PARM+1, REF NO.
 3260 >MLI D1,EOF.PARM
 3270 BCC .6 ...NO ERRORS
 3280 JMP PROCESS.ERROR
 3290 *--------------------------------
 3300 .6 LDA FIL.SZ+2 EOF.PARM+4
 3310 BEQ .7 ...NOT TOO LONG
 3320 LDA #$27
 3330 JMP PROCESS.ERROR
 3340 *--------------------------------
 3350 .7 LDA FIL.SZ EOF.PARM+2

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 94 of 168

 3360 STA READ.PARM+4
 3370 LDA FIL.SZ+1 EOF.PARM+3
 3380 STA READ.PARM+5
 3390 >MLI CA,READ.PARM
 3400 PHP
 3410 >MLI CC,CLOSE.PARM
 3420 BCC .9
 3430 PLP
 3440 .8 JMP PROCESS.ERROR
 3450 *--------------------------------
 3460 .9 PLP
 3470 BCS .8
 3480 JMP SYSTEM
 3490 *--------------------------------
 3500 BACKSPACE.IN.PATHNAME
 3510 LDA CH UNLESS ALREADY AT BEGINNING
 3520 BEQ .1 ...WE WERE
 3530 DEX
 3540 LDA #" "
 3550 JSR COUT
 3560 DEC CH
 3570 DEC CH
 3580 JSR COUT
 3590 DEC CH
 3600 .1 JMP NEXT.PATHNAME.CHAR
 3610 *--------------------------------
 3620 PRINT.MESSAGE
 3630 LDX #0
 3640 MSG.LP LDA MSG.LP,X
 3650 MSG.ADDR .EQ *-2
 3660 BEQ .1
 3670 ORA #$80
 3680 JSR COUT
 3690 INX
 3700 BNE MSG.LP
 3710 .1 RTS
 3720 *--------------------------------
 3730 PROCESS.ERROR
 3740 STA ERRCOD
 3750 LDA #12 VTAB 13
 3760 STA CV
 3770 JSR CROUT MAKE IT 14
 3780 LDA ERRCOD
 3790 CMP #1
 3800 BNE .1
 3810 LDA #ERQT.1
 3820 STA MSG.ADDR
 3830 LDA /ERQT.1
 3840 STA MSG.ADDR+1
 3850 BNE .3
 3860 .1 CMP #$40
 3870 BEQ .2
 3880 CMP #$44
 3890 BEQ .2
 3900 CMP #$45
 3910 BEQ .2

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 95 of 168

 3920 CMP #$46
 3930 BEQ .2
 3940 LDA #ERQT.2
 3950 STA MSG.ADDR
 3960 LDA /ERQT.2
 3970 STA MSG.ADDR+1
 3980 BNE .3 ...ALWAYS
 3990 .2 LDA #ERQT.3
 4000 STA MSG.ADDR
 4010 LDA /ERQT.3
 4020 STA MSG.ADDR+1
 4030 .3 JSR PRINT.MESSAGE
 4040 LDA #0 VTAB 1
 4050 STA CV
 4060 JMP START.PATHNAME.OVER
 4070 *--------------------------------
 4080 Q.PRFX .AS -/ENTER PREFIX (PRESS "RETURN" TO ACCEPT)/
 4090 .HS 00
 4100 Q.PATH .AS -/ENTER PATHNAME OF NEXT APPLICATION/
 4110 .HS 00
 4120 ERQT.1 .HS 87
 4130 .AS -/NOT A TYPE "SYS" FILE/
 4140 .HS 00
 4150 ERQT.2 .HS 87
 4160 .AS -"I/O ERROR "
 4170 .HS 00
 4180 ERQT.3 .HS 87
 4190 .AS -"FILE/PATH NOT FOUND "
 4200 .HS 00
 4210 *--------------------------------
 4220 FILE.INFO.PARM
 4230 .DA #10
 4240 .DA BUF
 4250 ACBITS .HS 00
 4260 FILTYP .HS 00
 4270 .BS 13
 4280 *--------------------------------
 4290 OPEN.PARM
 4300 .DA #3
 4310 .DA BUF
 4320 .DA $1800 BUFFER ADDR
 4330 OP.REF .BS 1 REF NO.
 4340 *--------------------------------
 4350 CLOSE.PARM
 4360 .DA #1
 4370 CL.REF .BS 1 REF NO.
 4380 *--------------------------------
 4390 READ.PARM
 4400 .DA #4
 4410 RD.REF .BS 1 REF NO.
 4420 .DA $2000 BUFFER ADDR
 4430 .BS 2 # BYTES TO READ
 4440 .BS 2 # ACTUALLY READ
 4450 *--------------------------------
 4460 EOF.PARM
 4470 .DA #2

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 96 of 168

 4480 EF.REF .BS 1 REF NO.
 4490 FIL.SZ .BS 3 EOF POSITION
 4500 *--------------------------------
 4510 PREFIX.PARM
 4520 .DA #1
 4530 .DA BUF
 4540 *--------------------------------
 4550 .LIF

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 97 of 168

ProDOS MLI Tracing

Ken Kashmarek
Eldridge, Iowa

December 1985

I took Bob S-C's work with ProDOS Snooper (October 1985 AAL) one step further: I
added MLI calls to the information that is collected in the trace table. By combining
the MLI call data with the device driver data, we get a better idea of what is
happening.

The entries below all come from slot 6 drive 1. MLI calls are tagged with an "M"
after the hex data. To support both the MLI calls and device driver calls, the hex
output provides the data as it exists in memory without taking into account whether a
set of bytes is a two byte memory pointer or a single data byte.

For all calls, the return address is still shown as hi-byte first before the colon.
Data for the device driver parameter is still from $42-$47. For MLI calls, the return
address is to the program that called the routine in the BASIC.SYSTEM global page.
All BASIC.SYSTEM calls go to the $BE00 global page and then to the $BF00 ProDOS
global page. MLI data is the MLI call number followed by the first five bytes of the
parameter list (some bytes do not apply if the list is shorter).

The volume in question is labeled /TEST and has one file, ABC, in the root directory.

First of all, issue: CAT,S6

 A6E9:C7 BC BC 02 BC BC M GET PREFIX
 A85F:C5 60 01 02 00 03 M ON LINE CALL + Not used when
 EC0C:01 50 00 DC 02 00 READ BLOCK 2 + CAT /TEST entered
 A825:C4 BC BC C3 0F 00 M GET FILE INFO
 EC0C:01 60 00 DC 02 00 READ BLOCK 2
 EC0C:01 60 00 DC 06 00 READ Bit Map
 B1B9:C8 BC BC 00 8A 01 M OPEN FILE
 EC0C:01 60 00 DC 02 00 READ BLOCK 2
 EE85:01 60 00 8A 02 00 READ BLOCK 2
 B175:CA 01 59 02 2B 00 M READ FILE
 B201:CE 01 2B 00 00 03 M SET FILE MARK + Appears for each
 B208:CA 01 59 02 27 00 M READ FILE + file in directory
 B0A5:CC 01 00 C3 CF D0 M CLOSE FILE
 B0FB:C5 60 BD BC 00 03 M ON LINE CALL
 EC0C:01 50 00 DC 02 00 READ BLOCK 2
 B10F:C4 BC BC C3 0F 18 M GET FILE INFO
 EC0C:01 60 00 DC 02 00 READ BLOCK 2
 EC0C:01 60 00 DC 06 00 READ Bit Map

For this simple operation, there are ten MLI calls and eight device driver calls
(disk I/O operations). I do not understand the reason for the Get Prefix call at the
beginning. It would appear that the On Line call and the Get File Info call at the
end are unnecessary (we will be checking this out as we go). On Line returns the
volume name, but this should already be available through the prefix or pathname of
the directory. Get File Info information should already be available from the
previous call, and the bit map was already read in once. However, this is a simple

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 98 of 168

catalog operation and may be indicative of some of the steps necessary for more
complex catalog operations.

Carrying this one step further, I issued CAT /TEST/DIR. In this case, the first read
of the bit map is not performed. Next, the former apparently duplicate read of block
2 now turns into a read of block 7, the key block for subdirectory DIR (in /TEXT/DIR;
the device driver return address is $EE85, the buffer address is $8A00). Note: block
2 is the key block of the root directory.

A Get File Info call for a volume name (/TEST) always reads the bit map. Therefore,
this call is repeated when cataloging a volume, but not when cataloging a
subdirectory. As to the On Line call, it is used to get volume name for the Get File
Info call for the free space information for the volume, since the initial catalog
command may have been for a subdirectory. This explains (only partially) what
appeared to be duplicate reads of the same information.

Now, let's try loading an Applesoft file: LOAD ABC,S6

 A85F:C5 60 01 02 00 03 M ON LINE CALL + Not used for
 EC0C:01 60 00 DC 02 00 READ BLOCK 2 + LOAD /TEST/ABC
 A825:C4 BC BC E3 FC 01 M GET FILE INFO
 EC0C:01 60 00 DC 02 00 READ BLOCK 2
 AC00:CC 00 00 C3 CF D0 M CLOSE ALL FILES
 B1B9:C8 BC BC 00 8A 01 M OPEN FILE
 EC0C:01 60 00 DC 02 00 READ BLOCK 2
 EE85:01 60 00 8A 07 00 READ BLOCK 7
 AC22:D1 01 01 02 00 03 M GET FILE EOF
 AC4B:CA 01 01 08 09 00 M READ FILE
 AC50:CC 01 00 C3 CF D0 M CLOSE FILE

The loaded program is less than 512 bytes in length, so the key block read is the
only data I/O operation. As with the catalog operation, the Get File Info call is
used to verify the file type. Close All Files is used in case the previous program
left any open. Note the Get File EOF call which is used to get the length for the
Read File call (which performs the entire load operation). This example is relatively
simple. Let's check what happens when we create an Applesoft file that is just over
512 bytes in length (changing our seedling file into a sapling file, which requires
an index block and two data blocks).

We'll lengthen the program, and then type: SAVE /TEST/ABC.3

 A825:C4 BC BC C3 0F 18 M GET FILE INFO
 EC0C:01 60 00 DC 02 00 READ BLOCK 2
 ACDC:C0 BC BC C3 FC 01 M CREATE FILE
 EC0C:01 60 00 DC 02 00 READ BLOCK 2
 F477:00 60 00 DC 00 00 STATUS S6,D1
 EC0C:01 60 00 DA 06 00 READ BIT MAP
 EC0C:02 60 00 DC 07 00 WRITE BLOCK 7
 EC0C:01 60 00 DC 02 00 READ BLOCK 2
 EC0C:02 60 00 DC 02 00 WRITE BLOCK 2
 EC0C:02 60 00 DA 06 00 WRITE BIT MAP
 B1B9:C8 BC BC 00 8A 01 M OPEN FILE CALL
 EC0C:01 60 00 DC 02 00 READ BLOCK 2
 EE85:01 60 00 8A 07 00 READ BLOCK 7
 AD0A:CB 01 01 08 5B 02 M WRITE FILE CALL
 F477:00 60 01 08 00 00 STATUS S6,D1

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 99 of 168

 EE85:02 60 00 8A 07 00 WRITE BLOCK 7
 EC0C:01 60 00 DA 06 00 READ BIT MAP
 EC0C:02 60 00 DA 06 00 WRITE BIT MAP
 EE85:02 60 00 8C 08 00 WRITE BLOCK 8
 EC0C:01 60 00 DA 06 00 READ BIT MAP
 AD11:D0 01 5B 02 00 03 M SET FILE E0F CALL
 AD16:CC 01 00 C3 CF D0 M CLOSE FILE CALL
 EE85:02 60 00 8A 09 00 WRITE BLOCK 9
 EC0C:02 60 00 DA 06 00 WRITE BIT MAP
 EE85:02 60 00 8C 08 00 WRITE BLOCK 8
 EC0C:01 60 00 DC 02 00 READ BLOCK 2
 EC0C:01 60 00 DC 02 00 READ BLOCK 2
 EC0C:02 60 00 DC 02 00 WRITE BLOCK 2

This sequence has the same number of MLI calls for a seedling or a sapling file. The
big difference is allocating the index block (block number 8) and additional data
blocks. This also generates additional calls to read and write the bit map.

If the file already exists, and the SAVE command does not change the length, then the
Create File call is not executed, there are no accesses to the bit map (block 6), and
the index block does not change. If the file length changes sufficiently to add or
delete blocks, then the bit map is updated and the index block is rewritten (this is
forced by the Set File EOF call which adjusts the file length).

Interesting note: whenever a file is opened, the first data block is always read in,
even if the file will subsequently be written to. Likewise, when a new file is
allocated, the first data block is allocated and written, even if no data is placed
in the block.

In the above sequence, what appears to be a duplicate read of block 2 (return address
$EC0C) is actually a read to separate blocks if the SAVE command was to a
subdirectory. It turns out to be duplicate reads to the subdirectory block, write to
the subdirectory, then read and write the root directory. Sigh.

LOAD /TEST/ABC.3 is similar to the previous load operation, except that we must also
read the index block before reading the data blocks, and there are two data blocks
rather than one.

Finally, let's try deleting this file: DELETE /TEST/ABC.3

 A825:C4 BC BC E3 04 00 M GET FILE INFO CALL
 EC0C:01 60 00 DC 02 00 READ BLOCK 2
 9AD7:C1 BC BC 02 BC BC M DESTROY FILE CALL
 EC0C:01 60 00 DC 02 00 READ BLOCK 2
 F477:00 60 00 DC 00 00 STATUS S6,D1
 EC0C:01 60 00 DC 08 00 READ BLOCK 8 (index block)
 EC0C:01 60 00 DA 06 00 READ BIT MAP
 EC0C:02 60 00 DC 08 00 WRITE INDEX BLOCK (zeroed)
 EC0C:01 60 00 DC 07 00 READ BLOCK 7
 EC0C:02 60 00 DA 06 00 WRITE BIT MAP
 EC0C:01 60 00 DC 02 00 READ BLOCK 2
 EC0C:02 60 00 DC 02 00 WRITE BLOCK 2

Again, use Get File Info for file type and status call to see if the disk can be
written to. The bit map is read and written to reflect the freed blocks. Block 8, the

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 100 of 168

former file index block, is trashed. I don't know why block 7 is read in. Trashing
the index block makes it very hard to reconstruct a DELETEd file.

At this point, we get a feel for what is happening between the MLI calls and the
device driver calls. Consider how extensive these simple examples become on a hard
disk if working down three or four directory levels and at the second, third, or
fourth block in each directroy, and the hard disk has five blocks for the bit map
(and we need the fifth block because the disk is almost full). Ouch!

I performed one more test case, far too long to list here. It involved adding a
record to a new sparse random access file. The new record caused the file to grow to
a tree file. The program used was:

 10 D$ - CHR$(4)
 20 PRINT D$"OPEN /TEST/NAMES,L140"
 30 PRINT D$"WRITE/TEST/NAMES,R936"
 40 PRINT "XXX ... XXX": REM 120 X's
 50 PRINT D$"CLOSE/TEST/NAMES"

This sequence produced eight MLI calls and 29 device driver calls to perform I/O
(there were three status calls). The file ended up with six blocks (master index
block, two index blocks, and three data blocks) which generated 12 accesses to read
and write the bit map.

A 32 megabyte hard disk, the maximum size supported by ProDOS, requires 16 blocks for
the free space bit map. Obviously, such a disk would suffer quite a performance
impact when allocating new files, or adding space to existing files, if the hard disk
were more than half full.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 101 of 168

Correction to DOS/ProDOS Double Init

Bob Sander-Cederlof

January 1986

The Sep 85 (V5N12) issue of AAL included an article and program to initialize a disk
with both DOS and ProDOS catalogs in separate halves of the disk. After trying to use
Catalog Arranger on a disk we made with DOUBLE.INIT, we discovered that program has a
bug.

The DOS catalog is written in track $11, starting with sector 15 and going backwards
to sector 1. The second and third bytes in each catalog sector are supposed to point
to the next catalog sector, with the exception of those bytes in the LAST catalog
sector. In the last catalog sector, the link bytes should both be $00, to signal to
anyone who tries to read the catalog that this is indeed the last sector. DOUBLE.INIT
stored $11 in the first link byte, and so some catalog reading programs such as
Catalog Arranger get very confused.

The fix is to add the following lines to the program, where the line numbers
correspond to those in the printed listing in AAL:

 2201 BNE .5
 2202 STY C.TRACK (Y=0)

Add the label ".5" to line 2210, so that it reads:

 2210 .5 JSR CALL.RWTS

If you have already created some disks with DOUBLE.INIT, we suggest you use a program
such as Bag of Tricks, CIA, or some other disk zap program to clear the second byte
of track $11, sector $01 on those disks.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 102 of 168

Modifying ProDOS for Non-Standard ROMs

Bob Sander-Cederlof

March 1986

We have published several times ways to defeat the ROM Checksummer that is executed
during a ProDOS boot, so that owners of Franklin clones (or even real Apples with
modified monitor ROMs) could use ProDOS-based software. See AALs of March and June,
1984.

Both of these previous articles are out of date now, because they apply to older
versions of ProDOS than are current. What follows applies to Version 1.1.1 of ProDOS.

There are two problems with getting ProDOS to boot on a non-standard machine. The
first is the ROM Checksummer. This subroutine starts at $267C in Version 1.1.1, and
is only called from $25EE. The code is purposely weird, designed to look like it is
NOT checking the ROMs. It also has apparently purposeful side effects. Here is a
listing of the subroutine:

 1000 *SAVE CHECKSUMMER
 1010 *--------------------------------
 1020 .OR $267C POSITION IN PRODOS SYSTEM FILE
 1030 *--------------------------------
 1040 CHECKSUMMER
 1050 CLC
 1060 LDY $2674 (GETS A VALUE 0)
 1070 .1 LDA ($0A),Y GETS (FB09...FB10)
 1080 AND #$DF STRIP OFF LOWER CASE BIT
 1090 ADC $2674 ACCUMULATE SHIFTED SUM
 1100 STA $2674
 1110 ROL $2674 SHIFT RESULT, CARRY INTO BIT 0
 1120 INY
 1130 CPY $2677 DO IT 8 TIMES
 1140 BNE .1
 1150 TYA A = Y = 8
 1160 ASL FORM $80 BY SHIFTING
 1170 ASL
 1180 ASL
 1190 ASL
 1200 TAY $80 TO Y FOR LATER TRICK
 1210 EOR $2674 MERGE WITH PREVIOUS "SUM"
 1220 ADC #11 FORM $00 FOR VALID ROMS
 1230 BNE .2 ...NOT A VALID ROM
 1240 LDA $0C GET MACHINE ID BYTE
 1250 RTS
 1260 .2 LDA #0 SIGNAL INVALIDITY
 1270 RTS

The pointer at $0A,0B was set up to point to $FB09 using very sneaky code at $248A.
Location $2674 initially contains a 0, and $2677 contains an 8. Only the bytes from
$FB09 through $FB10 are checksummed. Truthfully, "checksummed" is not the correct
word.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 103 of 168

The wizards who put ProDOS together figured out a fancy function which changes the 64
bits from $FB09 through $FB10 into the value $75. Their function does this whether
your ROMs are the original monitor ROM from 1977-78, the Autostart ROM, the original
//e ROM, or any other standard Apple ROM. The values in $FB09-FB10 are not the same
in all cases, but the function result is always $75. However, a Franklin ROM does not
produce $75. Probably a BASIS also gives a different result, and other clones. Once
$75 is obtained, further slippery code changes the value to $00.

The original Apple II ROM has executable code at $FB09, and in hex it is this: B0 A2
20 4A FF 38 B0 9E. All other Apple monitor ROMs have an ASCII string at $FB09. The
string is either "APPLE][" or "Apple][". Notice that the "AND #$DF" in the
checksummer strips out the upper/lower case bit, making both ASCII strings the same.

I wrote a test program to print out all the intermediate values during the
"Checksummer's" operation. Here are the results, for both kinds of ROMs.

 Original ROM Later ROMs
 LDA AND ADC STA ROL LDA AND ADC STA ROL
 B0 90 00 90 20 C1 C1 00 C1 82
 A2 82 20 A2 44 D0/F0 D0 82 52 A5
 20 00 44 44 88 D0/F0 D0 A5 75 EB
 4A 4A 88 D2 A4 CC/EC CC EB B7 6F
 FF DF A4 83 07 C5/E5 C5 6F 34 69
 38 18 07 1F 3E A0 80 69 E9 D2
 B0 90 3E C3 9C DD DD D2 AF 5F
 9E 9E 9C 3A 75 DB DB 5F 3A 75

I don't understand why this code gives the same result, but I see it does. Now, dear
readers, tell me how anyone ever figured out what sequence of operations would
produce the same result using these two different sets of eight bytes, and yet
produce a different result for clones! If you understand it, please explain it to me!

By the way, here is a listing of my test program:

 1000 .LIF
 1010 *SAVE TEST.CKSUMMER
 1020 *--------------------------------
 1030 * SIMULATE PRODOS $FB09-FB10 CHECK-SUMMER
 1040 * (AT $267C IN PRODOS 1.1.1)
 1050 *--------------------------------
 1060 T
 1070 LDA #S1
 1080 STA $0A
 1090 LDA /S1
 1100 STA $0B
 1110 JSR CS
 1120 LDA #S2
 1130 STA $0A
 1140 LDA /S2
 1150 STA $0B
 1160 CS
 1170 JSR PT
 1180 CLC
 1190 LDY #0
 1200 STY X
 1210 .1 LDA ($0A),Y

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 104 of 168

 1220 JSR B
 1230 AND #$DF
 1240 JSR B
 1250 LDA X
 1260 JSR B
 1270 LDA ($0A),Y
 1280 AND #$DF
 1290 ADC X
 1300 STA X
 1310 JSR B
 1320 ROL X
 1330 LDA X
 1340 JSR B
 1350 JSR $FD8E
 1360 INY
 1370 CPY #8
 1380 BCC .1
 1390 TYA
 1400 ASL
 1410 ASL
 1420 ASL
 1430 ASL
 1440 ORA X
 1450 JSR B
 1460 ADC #$0B
 1470 *--------------------------------
 1480 B PHA
 1490 PHP
 1500 JSR $FDDA
 1510 LDA #" "
 1520 JSR $FDED
 1530 JSR $FDED
 1540 PLP
 1550 PLA
 1560 RTS
 1570 *--------------------------------
 1580 X .BS 1
 1590 *--------------------------------
 1600 S1 .AS -/APPLE][/
 1610 S2 .HS B0.A2.20.4A.FF.38.B0.9E
 1620 *--------------------------------
 1630 TITLE .HS 8D8D
 1640 .AS -/LDA AND ADC STA ROL/
 1650 .HS 8D00
 1660 *--------------------------------
 1670 PT
 1680 LDY #0
 1690 .1 LDA TITLE,Y
 1700 BEQ .2
 1710 JSR $FDED
 1720 INY
 1730 BNE .1
 1740 .2 RTS
 1750 *--------------------------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 105 of 168

The checksummer can be defeated. The best way, preserving the various side effects,
is to change the byte at $269F from $03 to $00. This changes the BNE to an effective
no-operation, because it will branch to the next instruction regardless of the
status. Another way to get the same result is to store $EA at both $269E and $269F.
Still another way is to change the "LDA #0" at $26A3,4 to "LDA $0C" (A5 0C), so that
either case gives the same result.

If it thinks it is in a valid Apple computer, the checksummer returns a value in the
A-register which is non-zero, obtained from location $0C. The value at $0C has been
previously set by looking at other locations in the ROM, trying to tell which version
is there. Part of this code is at $2402 and following, and part is at $2047 and
following. The byte at $0C will eventually become the Machine ID byte at $BF98 in the
System Global Page, so it also gets some bits telling how much RAM is available, and
whether an 80-column card and a clock card are found.

If you have a non-standard Apple or a clone the bytes which are checked to determine
which kind of ROM you have may give an illegal result. The following table shows the
bytes checked, and the resulting values for $0C. The values in parentheses are not
ever checked, but I included them for completeness. The value in $0C will be further
modified to indicate the amount of RAM found and the presence of a clock card.

 Version FBB3 FB1E FBC0 FBBF $0C

 Original Apple II 38 (AD) (60) (2F) 00
 Autostart, II Plus EA AD (EA) (EA) 40
 Original //e 06 (AD) EA (C1) 80
 Enhanced //e 06 (AD) E0 (00) 80
 DEBUG //e 06 (AD) E1 (00) 80
 Original //c 06 (4C) 00 FF 88
 //c Unidisk 3.5 06 (4C) 00 00 88
 /// Emulating II EA 8A (??) (??) C0

By the way, ProDOS 1.1.1 will not allow booting by an Apple /// emulating a II Plus,
possibly because the standard emulator only emulates a 48K machine.

I have no idea what a clone would have in those four locations, but chances are it
would be different. You should probably try to fool ProDOS into thinking you are in a
II Plus, because most clones are II Plus clones. This means you should somehow change
the ID procedures so that the result in $0C is a value of $40. One way to do this is
change the code at $2402 and following like this:

 Standard Change to

 2402- A9 00 LDA #0 2402- A9 40 LDA #$40
 2404- 85 0C STA $0C 2404- 4C 2E 24 JMP $242E
 2406- A3 B3 FB LDX $FBB3

If your clone or modified ROM is a //e, change $2402 to LDA #$80 instead.

You may also need to modify the code at $2047 and following. If you are trying to
fool ProDOS into thinking you are an Apple II Plus or //e, and have already made the
change described above, change $2047-9 like this:

 Standard Change to

 2047- AE B3 FB LDX $FBB3 2047- 4C 6D 20 JMP $206D

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 106 of 168

No doubt future versions of ProDOS will make provision for clones and modified ROMs
even more difficult. And there are always the further problems encountered by usage
of the ROMs from BASIC.SYSTEM and the ProDOS Kernel and whatever application program
is running.

I am intrigued about seeing what the minimum amount of code is that can distinguish
between the four legal varieties of ROM for ProDOS. I notice from the table above
that I can identify the four types and weed out the ///emulator by the following
simple code at $2402:

 LDA $FBB3
 ORA $FB1E
 LDX #3
 .1 CMP TABLE.1,X
 BEQ .2
 DEX
 BPL .1
 SEC
 RTS
 *
 TABLE.1 .HS BD.EF.AF.4E
 TABLE.2 .HS 00.40.80.88
 *
 .2 LDA TABLE.2,X
 JMP $242E

With this code installed, all the code from $2047-$206C is not needed, and the JMP
$206E should be installed at $2047. The new code at $2402 fits in the existing space
with room to spare. Can you do it with even shorter code?

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 107 of 168

New ProDOS Program Selector

Bob Sander-Cederlof

July 1986

In the November 1985 issue of Apple Assembly Line I printed a complete commented
listing of the ProDOS QUIT code. This code resides at $D100-D3FF inside ProDOS, and
is downloaded to $1000 and executed by the $65 MLI call.

The BYE command in BASIC.SYSTEM and SCASM.SYSTEM both call ProDOS MLI with call
number $65, and so do many other system programs. For some reason FILER has its own
quit code, which operates slightly differently from MLI-$65, but not really better.
No one seems to particularly like MLI-$65, but they usually learn to live with it.
That is, unless they purchase Catalyst, MouseFiler, or one of the other commercially-
available ProDOS program selectors.

Not wanting to buy three or four different program selectors until I found one I
liked, I decided to try writing my own. It replaces the standard QUIT code inside
ProDOS, so that MLI-$65 downloads and executes my new code. My program first lists
all of the on-line volume names, so that you can select a volume. You perform the
selection by moving the cursor-bar with the arrow keys, and pressing RETURN. ESCAPE
makes the program re-do the list of volume names, in case you want to change
diskettes. Once a volume is selected, all of the system (SYS) and directory (DIR)
filenames in that volume will be listed. Again, you use the arrow keys and RETURN to
select either a system program to be executed, or a sub-directory to display. Just a
few quick keystrokes and you are in a new application!

Here is an example of the volume name display:

 S/D VOLUME NAME

 3/2 RAM
 7/1 HARD1
 7/2 HARD2
 6/1 UTILITIES

 USE ARROWS AND <RETURN> TO SELECT
 USE <ESCAPE> TO TRY AGAIN

And here is an example of a filename display:

 /HARD1

 SYS -- PRODOS
 SYS -- SCASM.SYSTEM
 SYS -- BASIC.SYSTEM
 SYS -- CONVERT
 SYS -- UTIL.SYSTEM
 DIR -- ASM1
 DIR -- ASM2
 DIR -- SCI
 DIR -- FSE
 DIR -- XREF

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 108 of 168

 DIR -- SCWP
 DIR -- TIMEMASTER
 DIR -- THUNDERCLOCK
 DIR -- PHASOR
 DIR -- MINTERMS
 DIR -- DP18
 <<<MORE>>>

 USE ARROWS AND <RETURN> TO SELECT
 USE <ESCAPE> TO TRY AGAIN

All of the SYS files are listed first, and then all of the DIR files, regardless of
the order within the directory. This makes it easier to find the file you are looking
for. If there are more than 16 filenames to display, the first 16 will be listed,
followed by the word "<<<MORE>>>". When you use the arrow keys to move beyond the
bottom of the list, if there are more filenames, the list will scroll up to make room
for the next name on the screen. When the top name listed is not the first name in
the list, the word "<<<MORE>>>" will be displayed above the list. Actually, it is
easier to use than it is to describe.

I have gotten so used to an 80-column display now that I decided to make the menu in
that mode. Lines 1425-1430 initialize the 80-column display for an enhanced Apple //e
or //c. If you want to use some other configuration, or just like 40-columns better,
replace those two lines with the following:

 1421 JSR $FE93
 1422 JSR $FE89
 1423 STA $C00C
 1424 STA $C00F
 1425 STA $C000
 1426 .2 JSR HOME

The six lines above make QUITTER a little too long to fit in three pages, so you need
to make room for it somehow. I suggest putting the variables from lines 4870-4950
into page zero, say at $06-$0E. This will make the code assemble shorter, so it still
fits between $D100 and $D3FF inside ProDOS.

An alternative is to make a further modification to ProDOS. The subroutine which
downloads the QUIT code is at $FCE5-FD3A inside ProDOS. It is very inefficient, so
there is ample room for adding features. However, by merely changing the LDX #3 at
$FD06 to LDX #4, you can make it download four pages instead of three. When you BLOAD
PRODOS at $2000, the LDX #3 is found at $4C06. Since the QUIT code is at the end of
the PRODOS file, you can write a longer QUIT program if you wish. You also need to
change the $03 at $2233 to $04, so that the boot code will install QUIT where it
belongs.

Walking through the New QUITTER

The comments in lines 1010-1090 explain how to install the new QUITTER inside the
PRODOS system file. Just in case there is an error, I recommend you try this first on
a disk you can afford to lose. It all works here, but there's many a slip 'twixt the
cup and the lip!

Line 1320 switches on the motherboard ROM code, so that we can use Apple monitor
routines. Lines 1330-1410 clear out the memory bitmap in the ProDOS System Global
Page. We have to do that so we can load another system file. Once the bitmap has been

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 109 of 168

cleared, it is not safe to try to return to whatever system program was operating
before QUITTER was entered. Anyway, the RESET vector has already been pointed at
QUITTER, so it is pretty difficult to get out of QUITTER. If you wish, you could add
a feature that allows aborting the QUIT call, but be aware that the memory bitmap
will have been messed up.

Lines 1420-1590 display a list of all the volumes currently on-line, and allow you to
move the cursor bar up and down the list. The subroutine DISPLAY.VOLUMES lists the
volume names, displaying the one under the cursor in inverse mode. The subroutine
GET.KEY accepts the four arrow keys, RETURN, and ESCAPE. The left and up arrows move
the cursor bar up, while the right and down arrows move the cursor bar down. GET.KEY
is a little complicated, since it also handles windowing for long lists of filenames.

The subroutine READ.THE.FILE, called from line 1610, reads in an entire volume
directory or sub-directory. ProDOS has the built-in ability to read directories just
as though they were regular files, so READ.THE.FILE is pretty simple: it merely OPENs
the file, READs it, and CLOSEs it. Lines 2030-2150 perform the additional task of
appending the current volume or filename to the previous prefix.

Lines 1640-1710 clear the screen and display the pathname of the selected directory,
in preparation for display a file menu. Lines 1720-1800 collect a list of pointers to
all of the SYS and DIR files in the directory, using the SCAN.DIRECTORY subroutine.
SCAN.DIRECTORY appends a pointer to a list of pointers in DIRBUF for each file it
finds of the specified type.

Lines 1810-1900 display the SYS and DIR files found in the directory. If there are
more than 16 files, the word "<<<MORE>>>" will be displayed after the 16th name.
Moving the cursor bar down will scroll the list up, so that you can see the rest of
the filenames. If you press ESCAPE or RESET, it all starts over collecting volume
names. If you press RETURN when the cursor bar is on a DIR file, the directory name
will be added to the current prefix and a new filename list will appear.

If you press RETURN when the cursor bar is on a SYS file, lines 1950-1990 will load
the system file and start it running. Lines 1950-1960 set the system prefix to the
directory the system file is in. Lines 1970-1980 read the file into RAM starting at
$2000, and if there are no errors we blast-off with a JMP $2000. If there ARE errors,
the program just starts over.

 1000 *SAVE NEW.QUIT.CODE
 1010 *--------------------------------
 1020 * Installation:
 1030 * 1. BLOAD PRODOS,TSYS,A$2000
 1040 * 2. BLOAD B.NEW.QUITTER,A$5700
 1050 * 3. BSAVE PRODOS,TSYS,A$2000,L$3A00
 1060 * Location:
 1070 * In PRODOS file: $5700-59FF
 1080 * In ProDOS image: $D100-D3FF
 1090 * For execution: $1000-12FF
 1100 *--------------------------------
 1110 * Code which downloads the QUIT code resides at
 1120 * $FCE5-FD3A. This is loaded from $4BE5-4C3A.
 1130 *--------------------------------
 1140 BPNTR .EQ $00,01
 1150 SPNTR .EQ $02,03
 1160 DPNTR .EQ $04,05
 1170 CV .EQ $25

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 110 of 168

 1180 INVFLG .EQ $32
 1190 *--------------------------------
 1200 HOME .EQ $FC58
 1210 CLREOL .EQ $FC9C
 1220 COUT .EQ $FDED
 1230 CROUT .EQ $FD8E
 1240 *--------------------------------
 1250 MLI .EQ $BF00
 1260 BITMAP .EQ $BF58
 1270 *--------------------------------
 1280 .OR $1000
 1290 .TF B.NEW.QUITTER
 1300 *--------------------------------
 1310 QUITTER
 1320 LDA $C082 MOTHERBOARD ROMS
 1330 LDX #$16
 1340 LDA #0 PREPARE VIRGIN BITMAP
 1350 .1 STA BITMAP,X
 1360 DEX
 1370 BNE .1
 1380 INX X=1, LOCKOUT $BF00 PAGE
 1390 STX BITMAP+$17
 1400 LDA #$CF
 1410 STA BITMAP
 1420 *---LIST VOLUME NAMES------------
 1425 .2 LDA #$99 CTRL-Y
 1430 JSR $C300 SET I/O HOOKS, 80-COL MODE, CLEAR SCREEN
 1440 LDY #Q.SDV
 1450 JSR MSG
 1460 JSR CLOSE.ALL.FILES
 1470 JSR MLI
 1480 .DA #$C5,ONLINE
 1490 LDY #0
 1500 STY MAX.DIRPNT
 1510 STY DIR.START
 1520 STY PATHNAME
 1530 .3 STY SEL.LINE
 1540 JSR DISPLAY.VOLUMES
 1550 LDY #Q.VHELP
 1560 JSR MSG
 1570 JSR GET.KEY
 1580 BCC .3 ...ARROW KEYS
 1590 BNE .2 ...ESCAPE KEY
 1600 *---READ DIRECTORY---------------
 1610 .4 JSR READ.THE.FILE
 1620 BCS .7
 1630 *---PRINT PATHNAME---------------
 1640 JSR HOME
 1650 LDY #0
 1660 .5 LDA PATHNAME+1,Y
 1670 ORA #$80
 1680 JSR COUT
 1690 INY
 1700 CPY PATHNAME
 1710 BCC .5
 1720 *---COLLECT FILENAMES------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 111 of 168

 1730 LDX #0
 1740 LDA #$FF FIRST JUST "SYS" FILES
 1750 JSR SCAN.DIRECTORY
 1760 LDA #$0F THEN JUST "DIR" FILES
 1770 JSR SCAN.DIRECTORY
 1771 TXA SEE IF ANY FILES FOUND
 1772 BEQ .2 ...NO, BACK TO THE TOP
 1780 LDA #0 MARK END OF LIST
 1790 STA DIRBUF+256,X
 1800 STX MAX.DIRPNT
 1810 *---LIST THE FILENAMES-----------
 1820 TAY Y=0
 1830 STY DIR.START
 1840 .6 STY SEL.LINE
 1850 JSR DISPLAY.FILES
 1860 LDY #Q.VHELP
 1870 JSR MSG
 1880 JSR GET.KEY
 1890 BCC .6 ...ARROW KEYS
 1900 BNE .2 ...ESCAPE KEY
 1910 LDY #$10
 1920 LDA (SPNTR),Y GET FILE TYPE
 1930 BPL .4 DIRECTORY ($0F)
 1940 *---SYS FILE, LOAD & EXECUTE-----
 1950 JSR MLI SET PREFIX
 1960 .DA #$C6,PATH
 1970 JSR READ.THE.FILE
 1980 BCS .7 ...ERROR IN READING
 1990 JMP BUFFER
 2000 .7 JMP QUITTER
 2010 *--------------------------------
 2020 READ.THE.FILE
 2030 LDY #0 APPEND CURRENTLY SELECTED NAME
 2040 LDA (SPNTR),Y GET LENGTH OF NAME
 2050 AND #$0F
 2060 STA LENGTH
 2070 LDX PATHNAME CURRENT LENGTH
 2080 LDA #'/'
 2090 .1 INX
 2100 INY
 2110 STA PATHNAME,X
 2120 LDA (SPNTR),Y
 2130 DEC LENGTH
 2140 BPL .1
 2150 STX PATHNAME
 2160 JSR MLI OPEN THE FILE
 2170 .DA #$C8,OPEN
 2180 BCS RF.ERR
 2190 LDA O.REF FILE REFERENCE NUMBER
 2200 STA R.REF
 2210 JSR MLI READ THE WHOLE FILE
 2220 .DA #$CA,READ
 2221 BCC CLOSE.ALL.FILES
 2222 CMP #$4C IS IT JUST EOF?
 2223 SEC
 2230 BNE RF.ERR ...NO

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 112 of 168

 2240 CLOSE.ALL.FILES
 2250 JSR MLI CLOSE THE FILE
 2260 .DA #$CC,CLOSE
 2270 RF.ERR RTS
 2280 *--------------------------------
 2290 SCAN.DIRECTORY
 2300 STA CURTYP TYPE WE ARE COLLECTING
 2310 LDA #0 START WITH FIRST BLOCK
 2320 .1 STA CURBLK
 2330 LDA #BUFFER+4 FIRST 4 BYTES OF BLOCK SKIPPED
 2340 STA DPNTR
 2350 CLC COMPUTE PAGE OF PNTR
 2360 LDA /BUFFER+4
 2370 ADC CURBLK
 2380 STA DPNTR+1
 2390 LDA ENTCNT
 2400 STA LENGTH
 2410 *--------------------------------
 2420 .2 LDY #0
 2430 LDA (DPNTR),Y
 2440 AND #$F0
 2450 BEQ .4 ...DELETED FILE
 2460 CMP #$E0 ...HEADER?
 2470 BCS .4 ...YES
 2480 LDY #$10
 2490 LDA (DPNTR),Y LOOK AT FILE TYPE
 2500 CMP CURTYP
 2510 BNE .4 ...NOT CURRENT TYPE
 2520 *---DIR or SYS file--------------
 2530 .3 LDA DPNTR
 2540 STA DIRBUF,X
 2550 LDA DPNTR+1
 2560 STA DIRBUF+256,X
 2570 INX
 2580 *---ADVANCE TO NEXT ENTRY--------
 2590 .4 CLC
 2600 LDA DPNTR
 2610 ADC ENTLEN
 2620 STA DPNTR
 2630 BCC .5
 2640 INC DPNTR+1
 2650 .5 DEC LENGTH AT END OF BLOCK YET?
 2660 BNE .2 ...NO, CONTINUE IN BLOCK
 2670 CLC
 2680 LDA CURBLK
 2690 ADC #2
 2700 CMP ACTLEN+1
 2710 BCC .1 ...YES, READ NEXT BLOCK
 2720 *--------------------------------
 2730 RTS
 2740 *--------------------------------
 2750 CLOSE .DA #1,#0
 2760 ONLINE .DA #2,#0,BUFFER
 2770 OPEN .DA #3,PATHNAME,OPNBUF
 2780 O.REF .BS 1
 2790 READ .DA #4

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 113 of 168

 2800 R.REF .BS 1
 2810 .DA BUFFER,$9F00
 2820 ACTLEN .BS 2
 2830 PATH .DA #1,PATHNAME
 2840 *--------------------------------
 2850 DISPLAY.VOLUMES
 2860 JSR SETUP.DISPLAY.LOOP
 2870 LDA #BUFFER
 2880 STA BPNTR
 2890 LDA /BUFFER
 2900 STA BPNTR+1
 2910 *--------------------------------
 2920 .1 LDY #0
 2930 LDA (BPNTR),Y
 2940 AND #$0F
 2950 BEQ .3 ...NO VOLUME HERE
 2960 *--------------------------------
 2970 JSR CHECK.FOR.SEL.LINE
 2980 *--------------------------------
 2990 .2 LDA (BPNTR),Y GET UNIT NUMBER
 3000 LSR ISOLATE SLOT NUMBER
 3010 LSR
 3020 LSR
 3030 LSR
 3040 AND #7
 3050 ORA #"0"
 3060 JSR COUT PRINT SLOT NUMBER
 3070 LDA #"/"
 3080 JSR COUT
 3090 LDA (BPNTR),Y GET UNIT NUMBER AGAIN
 3100 ASL SET CARRY IF DRIVE 2
 3110 LDA #"1" ASSUME DRIVE 1
 3120 ADC #0 CHANGE TO 2 IF TRUE
 3130 JSR COUT
 3140 LDA #" " PRINT TWO SPACES
 3150 JSR COUT
 3160 JSR COUT
 3170 JSR PRINT.BPNTR.NAME
 3180 *--------------------------------
 3190 .3 CLC POINT TO NEXT VOLUME NAME
 3200 LDA BPNTR
 3210 ADC #16
 3220 STA BPNTR
 3230 BCC .4
 3240 INC BPNTR+1
 3250 .4 DEC LENGTH ANY MORE LEFT?
 3260 BNE .1 ...YES
 3270 RTS
 3280 *--------------------------------
 3290 PRINT.BPNTR.NAME
 3300 LDY #0
 3310 LDA (BPNTR),Y GET NAME LENGTH
 3320 AND #$0F
 3330 TAX
 3340 .1 INY PRINT THE VOLUME NAME
 3350 LDA (BPNTR),Y

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 114 of 168

 3360 ORA #$80
 3370 JSR COUT
 3380 DEX
 3390 BNE .1
 3400 *--------------------------------
 3410 .2 LDA #" " PRINT TRAILING BLANKS
 3420 JSR COUT
 3430 INY
 3440 CPY #16
 3450 BCC .2
 3460 LDA #$FF NORMAL MODE NOW
 3470 STA INVFLG
 3480 INC MAX.LINE COUNT THE LINE
 3490 JMP CROUT
 3500 *--------------------------------
 3510 GET.KEY
 3520 .1 LDA $C000 READ KEY FROM KEYBOARD
 3530 BPL .1
 3540 STA $C010 CLEAR THE STROBE
 3550 CMP #$8D
 3560 BEQ .2 <RETURN>
 3570 CMP #$88 <--
 3580 BEQ .3
 3590 CMP #$95 -->
 3600 BEQ .7
 3610 CMP #$8A DOWN ARROW
 3620 BEQ .7
 3630 CMP #$8B UP ARROW
 3640 BEQ .3
 3650 CMP #$9B ESCAPE
 3660 BNE .1 GET ANOTHER CHARACTER
 3670 LDA #$9B ...SET .NE.
 3680 .2 RTS
 3690 *---<UP OR LEFT ARROW>-----------
 3700 .3 LDY SEL.LINE CURRENT BRIGHT LINE
 3710 BNE .6 ...NOT TOP LINE
 3720 LDY DIR.START ARE WE DISPLAYING THE FIRST ONE?
 3730 BEQ .5 ...YES
 3740 DEC DIR.START ...NO, MOVE TOWARD FIRST LINE
 3750 .4 LDY #0 MAKE FIRST LINE BRIGHT
 3760 CLC
 3770 RTS
 3780 .5 LDY MAX.LINE MAKE LAST LINE BRIGHT
 3790 .6 DEY
 3800 CLC
 3810 RTS
 3820 *---<DOWN OR RIGHT ARROW>--------
 3830 .7 LDY SEL.LINE CURRENT BRIGHT LINE
 3840 INY MOVE TOWARD LAST LINE
 3850 CPY MAX.LINE BEYOND END OF SCREEN?
 3860 BCC .8 ...NO
 3870 LDA MAX.DIRPNT ...YES, CHECK IF SHOWING LAST LINE
 3880 SBC #17
 3890 BCC .4 ...YES
 3900 CMP DIR.START
 3910 BCC .4 ...YES

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 115 of 168

 3920 INC DIR.START ...NO, MOVE TOWARD LAST LINE
 3930 LDY SEL.LINE
 3940 CLC
 3950 .8 RTS
 3960 *--------------------------------
 3970 DISPLAY.FILES
 3980 JSR SETUP.DISPLAY.LOOP
 3990 LDA DIR.START
 4000 STA DIR.INDEX
 4010 JSR CLEAR.LINE.OR.PRINT.MORE.MSG
 4020 *--------------------------------
 4030 .1 LDX DIR.INDEX
 4040 LDY DIRBUF+256,X
 4050 BEQ .4 ...END OF LIST
 4060 STY BPNTR+1
 4070 LDA DIRBUF,X
 4080 STA BPNTR
 4090 JSR CHECK.FOR.SEL.LINE
 4100 *--------------------------------
 4110 .2 LDY #$10
 4120 LDA (BPNTR),Y
 4130 BMI .3 ...SYS FILE
 4140 LDY #Q.DIR
 4150 .HS 2C
 4160 .3 LDY #Q.SYS
 4170 JSR MSG
 4180 JSR PRINT.BPNTR.NAME
 4190 *--------------------------------
 4200 INC DIR.INDEX
 4210 DEC LENGTH
 4220 BNE .1
 4230 .4 LDA DIR.INDEX
 4240 CMP MAX.DIRPNT
 4250 *--------------------------------
 4260 CLEAR.LINE.OR.PRINT.MORE.MSG
 4270 BEQ .1 CLEAR LINE
 4280 LDY #Q.MORE
 4290 BNE MSG ...ALWAYS
 4300 .1 JSR CLREOL
 4310 JMP CROUT
 4320 *--------------------------------
 4330 SETUP.DISPLAY.LOOP
 4340 LDA #16 MAX 16 LINES IN LIST
 4350 STA LENGTH
 4360 LDY #0
 4370 STY MAX.LINE
 4380 INY SAME AS VTAB 3, HTAB 1
 4390 STY CV
 4400 JMP CROUT
 4410 *--------------------------------
 4420 CHECK.FOR.SEL.LINE
 4430 LDA MAX.LINE SEE IF CURRENT LINE SHOULD
 4440 CMP SEL.LINE BE INVERSE MODE
 4450 BNE .1 ...NO
 4460 LDA BPNTR ...YES, SO SETUP POINTER
 4470 STA SPNTR

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 116 of 168

 4480 LDA BPNTR+1
 4490 STA SPNTR+1
 4500 LDA #$3F & SET INVERSE MODE
 4510 STA INVFLG
 4520 .1 RTS
 4530 *--------------------------------
 4540 MSG1 JSR COUT
 4550 INY
 4560 MSG LDA QTS,Y
 4570 BNE MSG1
 4580 RTS
 4590 *--------------------------------
 4600 QTS .EQ *
 4610 Q.SDV .EQ *-QTS
 4620 .AS -"S/D VOLUME NAME"
 4630 .HS 00
 4640 Q.VHELP .EQ *-QTS
 4650 .HS 8D
 4660 .AS -/USE ARROWS AND <RETURN> TO SELECT/
 4670 .HS 8D
 4680 .AS -/USE <ESCAPE> TO TRY AGAIN/
 4690 .HS 8D
 4700 .HS 00
 4710 Q.SYS .EQ *-QTS
 4720 .AS -/SYS -- /
 4730 .HS 00
 4740 Q.DIR .EQ *-QTS
 4750 .AS -/DIR -- /
 4760 .HS 00
 4770 Q.MORE .EQ *-QTS
 4780 .AS -/<<<MORE>>>/
 4790 Q.CR .EQ *-QTS
 4800 .HS 8D00
 4810 *--------------------------------
 4820 .DUMMY
 4830 .OR $800
 4840 OPNBUF .BS 1024
 4850 DIRBUF .BS 512
 4860 PATHNAME .EQ $280
 4870 DIR.INDEX .BS 1
 4880 DIR.START .BS 1
 4890 MAX.DIRPNT .BS 1
 4900 SEL.LINE .BS 1
 4910 MAX.LINE .BS 1
 4920 UNIT .BS 1
 4930 LENGTH .BS 1
 4940 CURTYP .BS 1
 4950 CURBLK .BS 1
 4960 .ED
 4970 *--------------------------------
 4980 BUFFER .EQ $2000
 4990 ENTLEN .EQ BUFFER+$23 ENTRY LENGTH
 5000 ENTCNT .EQ BUFFER+$24 # ENTRIES PER BLOCK
 5010 *--------------------------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 117 of 168

The ProDOS QUIT-code Installer

Bob Sander-Cederlof

July 1986

As I just mentioned, the code which downloads the QUIT-code from $D100-D3FF to $1000-
12FF is located at $FCE5 inside ProDOS 1.1.1. Here is a commented listing of that
code.

 1000 *SAVE S.FCE5.FD3A
 1010 *--------------------------------
 1020 .OR $FCE5
 1030 .TA $800
 1040 DOWNLOAD.QUITTER
 1050 LDA $C083 SWITCH IN CORRECT D000 BANK
 1060 LDA $C083
 1070 *--------------------------------
 1080 LDA $00 SAVE 00...03 ON STACK
 1090 PHA
 1100 LDA $01
 1110 PHA
 1120 LDA $02
 1130 PHA
 1140 LDA $03
 1150 PHA
 1160 *---SETUP POINTERS FOR MOVING----
 1170 LDA /$1000 Destination Pointer
 1180 STA $03
 1190 LDA /$D100 Source Pointer-
 1200 STA $01
 1210 LDA #0
 1220 STA $00
 1230 STA $02
 1240 *--------------------------------
 1250 TAY Y=0
 1260 LDX #3 Move 3 Pages
 1270 .1 DEY
 1280 LDA ($00),Y
 1290 STA ($02),Y
 1300 TYA
 1310 BNE .1 ...More in same page
 1320 INC $01
 1330 INC $03 Advance to next pages
 1340 DEX Count the page
 1350 BNE .1 ...Copy another page
 1360 *---Restore $03...$00------------
 1370 PLA
 1380 STA $03
 1390 PLA
 1400 STA $02
 1410 PLA
 1420 STA $01

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 118 of 168

 1430 PLA
 1440 STA $00
 1450 *--------------------------------
 1460 LDA $C08B Select normal D000 bank
 1470 LDA $C08B
 1480 *---Set up RESET Vector----------
 1490 LDA #$1000 Lo-byte
 1500 STA $3F2
 1510 LDA /$1000 Hi-byte
 1520 STA $3F3
 1530 EOR #$A5 Power-up byte
 1540 STA $3F4
 1550 *--------------------------------
 1560 JMP $1000
 1570 *--------------------------------

The program above can be written in a lot less space, as follows:

 1580
 1590 *--------------------------------
 1600 .OR $FCE5
 1610 .TA $900
 1620 SC.DOWNLOAD.QUITTER
 1630 LDA $C083 Select D000 bank
 1640 *--------------------------------
 1650 LDY #0
 1660 .1 LDA $D100,Y
 1670 STA $1000,Y
 1680 LDA $D200,Y
 1690 STA $1100,Y
 1700 LDA $D300,Y
 1710 STA $1200,Y
 1720 INY
 1730 BNE .1
 1740 *--------------------------------
 1750 LDA $C08B Select normal D000 bank
 1760 *---Set up RESET Vector----------
 1770 STY $3F2 RESET Vector Lo-byte
 1780 LDA /$1000 Hi-byte
 1790 STA $3F3
 1800 EOR #$A5 Power-up byte
 1810 STA $3F4
 1820 *--------------------------------
 1830 JMP $1000
 1840 *--------------------------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 119 of 168

Using DP18 Under ProDOS

Bill Morgan

July 1986

A customer called up the other day to order the DP18 Source Code package, but he
wanted it only if it ran under ProDOS. (That's 18-digit Binary Coded Decimal
arithmetic for Applesoft.) Well, we hadn't tried to move it over before, but it
didn't sound like too much of a problem, so I gave it a shot. It did turn out to be
quite easy.

I first tried simply CONVERTing all the files over, including the binary object code,
and RUNning the example programs. That almost worked! The DP18 arithmetic all
operated just right, but the scheme of moving the Applesoft program up and BLOADing
DP18 at $803 ran into a little trouble. The forward pointers in each line of the
program weren't set up properly. Bob then pointed out to me that it's very easy to
install a program between BASIC.SYSTEM and the buffers, so that might be the way to
go in this situation. All it took was a little arithmetic to figure out that DP18
needs $1C pages and should therefore have an origin of $7E00. The .OR directive was
the only line inside DP18 that I had to change!

After that I needed only two more things: a short machine language program to get the
buffer from BI, issue the BLOAD command, and set the ampersand vector; and a one-line
Applesoft routine that checks the vector to find out if DP18 is already installed and
call the loader if not.

Here's the Applesoft routine:

 10 IF PEEK (1014) + 256 * PEEK (1015) < > 32563 THEN
 PRINT CHR$ (4)"BRUN INSTALL.DP18"

And here's all there is to the loader:

 1000 *SAVE S.INSTALL.DP18
 1010 *--------------------------------
 1020 BUFFER .EQ $200
 1030
 1040 AMPERSAND .EQ $3F6
 1050
 1060 DP.LINK .EQ $7E00
 1070 AMP.LINK .EQ $7E02
 1080
 1090 DOS.COMMAND .EQ $BE03
 1100 GET.BUFFER .EQ $BEF5
 1110 FREE.BUFFER .EQ $BEF8
 1120
 1130 COUT1 .EQ $FDF0
 1140 *--------------------------------
 1150 .OR $300
 1160 * .TF INSTALL.DP18
 1170
 1180 T JSR FREE.BUFFER kick others out
 1190 LDA #$1C

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 120 of 168

 1200 JSR GET.BUFFER get 28 pages
 1210 BCS ERROR
 1220 CMP #$7E must be at $7E00
 1230 BNE ERROR
 1240
 1250 LDX #LENGTH
 1260 .1 LDA COMMAND,X "BLOAD DP18"
 1270 STA BUFFER,X
 1280 DEX
 1290 BPL .1
 1300 JSR DOS.COMMAND do it
 1310 BCS ERROR
 1320
 1330 LDX #1
 1340 .2 LDA AMPERSAND,X save old vector
 1350 STA AMP.LINK,X
 1360 LDA DP.LINK,X & point to DP18
 1370 STA AMPERSAND,X
 1380 DEX
 1390 BPL .2
 1400 EXIT RTS
 1410
 1420 ERROR LDX #0
 1430 .1 LDA MESSAGE,X show error message
 1440 BEQ EXIT
 1450 JSR COUT1
 1460 INX
 1470 BNE .1
 1480 *--------------------------------
 1490 MESSAGE .HS 8D
 1500 .AS -/Error loading DP18/
 1510 .HS 8D00
 1520
 1530 COMMAND .AS -/BLOAD DP18/
 1540 .HS 8D
 1550 LENGTH .EQ *-COMMAND-1
 1560 *--------------------------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 121 of 168

Updated Memory vs.File Maps for ProDOS

Bob Sander-Cederlof

August 1986

I am not sure how it happened, but I seem to have botched up the table on page 20 of
the November 1985 issue. As I now understand it, the relationship between the PRODOS
file image (which loads at $2000) and the image of ProDOS after it is loaded is as
follows (the lines marked with * are the changed lines):

 2000-287E ProDOS Installer Code
 287F-28FE zeroes
 28FF-293C Installer for /RAM Driver
 293D-29FF zeroes

 2A00-2BFF Aux 200-3FF /RAM/ Driver
 * 2C00-2C99 FF00.FF99 /RAM/ Driver
 2C7F-2CFF zeroes
 * 2D00-4DFF DE00-FEFF MLI Kernel
 4E00-4EFF BF00-BFFF System Global Page
 * zeroes D700-DDFF
 4F00-4F7C D742-D7BE Thunderclock driver
 4F80-4FFF FF80-FFFF Interrupt Code
 * 5000-56FF D000-D6FF Device Drivers
 5700-59FF Alt D100-D3FF QUIT Code

Looking at the same information from the viewpoint of the finished product, here is a
map of ProDOS after it is loaded:

 4E00-4EFF BF00-BFFF System Global Page
 * 5000-56FF D000-D6FF Device Drivers
 * zeroes D700-DDFF
 4F00-4F7C D742-D7BE Thunderclock driver
 * 2D00-4DFF DE00-FEFF MLI Kernel
 * 2C00-2C99 FF00-FF99 /RAM/ Driver
 4F80-4FFF FF80-FFFF Interrupt Code

 5700-59FF Alt D100-D3FF QUIT Code

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 122 of 168

Compatibility with the Laser-128

Bob Sander-Cederlof

August 1986

We borrowed a Laser-128 (popular clone of the Apple //c) the other day. It had been
rumored that our software would not run on it, in spite of Central Point Software's
sanguine claims. Sure enough, the S-C Macro Assembler would not operate, under either
DOS or ProDOS. They boot and load, but no more.

A little investigation revealed what we expected: our software uses at least a half-
dozen entry points into the Apple monitor which are not supported in the Laser-128
monitor. Most of them have to do with our "$" command, which lets you perform monitor
commands without leaving the S-C environment. These patches will disable the "$"
command and repair the "MEM" command. The addresses shown are for our current release
disks.

DOS 3.3 $1000 version 1AE6:4C B3 1B 20 40 F9 A9 AD 4C ED FD
 124A:E9 1A (was 99 FD)
 125D:E9 1A (was 99 FD)

DOS 3.3 $D000 version DAE6:4C B3 DB 20 40 F9 A9 AD 4C ED FD
 D24A:39 DA (was 99 FD)
 D25D:E9 DA (was 99 FD)

ProDOS version 8B45:4C 24 8C 20 40 F9 A9 AD 4C ED FD
 8450:48 8B (was 99 FD)
 8463:48 8B (was 99 FD)

Make a backup copy of the disk, and then boot the backup copy. When the assembler
version you choose has loaded, type the letter X and the RETURN key. This should BRK
out of the assembler into the Laser-128 monitor. Make the patches as shown above, and
then type "3D0G" or control-RESET to get back into the assembler. It should be
working correctly now. If you are fixing the DOS 3.3 version, you can now BSAVE the
patched code on the file you originally loaded.

If you are fixing the ProDOS version, you now should BLOAD the type SYS file called
SCASM.SYSTEM. The same patches you just made to the assembler should now be applied
to the image of the SYS file, and then BSAVE the image on the disk:

 :BLOAD SCASM.SYSTEM,TSYS,A$2000
 :MNTR
 *2D45:4C 24 8C 20 40 F9 A9 AD 4C ED FD
 *2650:48 8B
 *2663:48 8B
 *3D0G
 :BSAVE SCASM.SYSTEM,TSYS,A$2000,L17920

One incompatibility remains for which we never found the cause: the esc-L shorthand
command, to turn a CATALOG line into a LOAD command, does not work in 80-column mode.
It does work just fine in 40-column mode. If any of you try these patches and find
other problems, we would like to hear about them.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 123 of 168

One more item: we found the Laser-128 monitor incorrectly disassembles the PLX
command as PHX.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 124 of 168

Thoughts on the ProDOS Bit Map

Louis Pitz

September 1986

I recently learned some more about ProDOS, the hard way. Yes, sometimes catastrophe
is indeed the mother of invention, or at least of learning. I was trying to finish
typing and saving a program when an electrical storm started. When I did a CATALOG,
all the files seemed to be okay, but the footer info at the end about blocks free,
used, and total was goofed up. Where I expected 86, 58, and 144, there was instead
681, 64999, and 144.

As an aside, there were only 144 total blocks because the disk is a combination of
ProDOS and DOS 3.3, as described in AAL Sep 85 (page 11). But the lesson I learned
would apply on regular ProDOS-only disks as well.

Note the logic in the goofed-up numbers: 681+64999 = 144 mod 65536. I suspected that,
since everything else was okay, the volume bit map had been messed up. So I inspected
the blocks on disk and confirmed my suspicion.

Further, the garbage in the volume bit map block was clearly extraneous, and none of
the the good data (the first 144/8=18 bytes) had been changed. The garbage was $DC's
in bytes $14A-1C0, inclusive. This is way past the end of the 'real' bytes even for a
ProDOS-only disk (35 bytes). But ProDOS must have counted the 1-bits in the $DC bytes
as free blocks. Then, subtracting this erroneously large number from 144, it got
64999. Yes! $DC=%11011100, and there are $77=119 such bytes, so that is 5*119=595
more "free" blocks to add to the 86 really free to get 681.

I've read Sandy Mossberg's article about the ProDOS CAT and CATALOG commands (Nibble,
May 86), but the arithmetic counting used sectors must be buried deep in the MLI,
associated with the GET-FILE-INFO call, according to my Beneath Apple ProDOS book.
Apparently ProDOS must count all the 1-bits in the volume bit map blocks as free,
regardless of the number of total blocks on the disk. In a way this seems like a bug,
but I guess it was just a shortcut in coding.

The lesson I have learned is not to use the "unused" part of the volume bit map to
store code, messages, or anything. For a ProDOS-only floppy, only 35 bytes are really
used, and 477 bytes are wasted. Nevertheless, do not be tempted to use them. They are
set to 0 upon formatting the disk, and ProDOS depends upon them staying that way!
I've used the extra bytes in the DOS 3.3 VTOC before, but I had better resist this
impulse in ProDOS.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 125 of 168

New ProDOS Bug and Fix

Bob Sander-Cederlof

November 1986

The November 1986 issue of Open-Apple (Tom Weishaar's wonderful newsletter) tells of
an important new discovery. For about a year Tom has been reporting on the symptom:
Appleworks and Applewriter data disks suddenly turning up with track 0 destroyed. It
only happened to 5.25" diskettes, and only one certain machines, and otherwise
seemingly at random. For a complete description, get all of Tom's back issues.

Some of his readers from Australia seem to have tracked down the problem, and they
suggest a solution. In the floppy driver code inside ProDOS, at $D6C3, there are four
STA commands that turn off all four stepper motor windings. Tom says the purpose is
to disable any 3.5" drives connected in a daisy chain to the same controller. I
wonder, because this code has been here since 1983, long before the possiblility of
3.5" drives. Anyway, the code has a bad side-effect in some systems.

A quirk of the controller card is that STA operations to the stepper motor winding
soft-switches also cause the card to write on the data bus. So you have the bus being
driven in two directions at once: the cpu trying to store the A-register, and the
controller card trying to send something meaningless. Besides resulting in garbage on
the data bus, which causes no real damage in this case, apparently in some Apples
with some controller cards it causes the card to go into WRITE mode. Whatever track
the head is sitting on will then be clobbered.

The solution is to change the four STA operations to LDA. The disk drives will get
the same message, without causing the bus contention. You can patch the PRODOS system
file and re-SAVE it, on all your disks. If you have a hard disk, you should only have
to do it one time. If you BLOAD the PRODOS file at $2000, the four instructions will
be found at $56D3:

 56D3: 9D 80 C0 STA $C080,X
 56D6: 9D 82 C0 STA $C082,X
 56D9: 9D 84 C0 STA $C084,X
 56DC: 9D 86 C0 STA $C086,X

If you change all those "9D" bytes to "BD", which is the opcode for "LDA addr,X", the
bug is supposed to disappear. Doing it from inside the S-C Macro Assembler, I did it
this way:

 :BLOAD PRODOS,TSYS,A$2000
 :UNLOCK PRODOS
 :$56D3:BD N 56D6:BD N 56D9:BD N 56DC:BD
 :BSAVE PRODOS,TSYS,A$2000,L14848
 :LOCK PRODOS

I personally have never had ProDOS clobber a diskette. I have trashed some myself, by
stupidity, but this hardware/software bug has never caused it. Nevertheless, I have
now patched my disks, just in case. Many thanks to Tom, Open-Apple, and to the men in
Australia.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 126 of 168

New ProDOS Book: ProDOS Inside and Out

December 1986

Dennis Doms and Tom Weishaar, Technical Consultant and Publisher of Open-Apple, have
conspired to bring us an interesting new book on programming under ProDOS, especially
focussing on BASIC.SYSTEM.

"ProDOS Inside and Out" begins by explaining what an operating system is, progresses
by describing files and directories, and goes on into simple commands. The next
sections cover Applesoft programming and text file handling, followed by information
about using machine language under BASIC.SYSTEM and using the ProDOS Kernel and MLI
calls from BASIC.

This book does an excellent job of introducing the basic concepts of ProDOS, and then
takes the reader on into quite advanced territory. It's very refreshing to find a
book that doesn't assume you're already an expert and still has enough substance to
help make you into one.

"ProDOS Inside and Out", by Dennis Doms and Tom Weishaar, from TAB Books. List is
$16.95, we'll have it for $16 + shipping.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 127 of 168

Commented Listing of ProDOS -- $DE00-DEF2

Bob Sander-Cederlof

December 1986

What happens when you call ProDOS MLI? In assembly language, MLI calls look like
this:

 JSR $BF00
 .DA #command,IOB.Address

The instruction at $BF00 is a "JMP $BFB7" in ProDOS 1.1.1; it is possibly different
in other versions. All of the following disassembly is for ProDOS 1.1.1. The changes
in the new ProDOS 1.2 are minor, and if you have 1.2 you should be able to figure out
what they are.

At $BFB7 there is some code I call LC.BRIDGE.ENTRY. It "remembers" what language card
areas are switched in at $D000 and at $E000, and then turns on the language card so
that it can jump into the MLI call processor.

 BFB7: SEC Set flag
 ROR MLI.ACTIVE.FLAG
 LDA $E000
 STA E000.BYTE (BFF4)
 LDA $D000
 STA D000.BYTE (BFF5)
 LDA $C08B
 LDA $C08B
 JMP $DE00

Now comes the good part. The following listing is of the code starting at $DE00,
which decodes the bytes following your JSR $BF00 and performs your request.

Lines 1010-1080 define some page-zero variables used by MLI. Lines 1090-1220 define
some items in the system global page. Lines 1230-1280 define some entry points inside
the rest of MLI, not listed here.

MLI calls don't change the X and Y registers, so they are saved at line 1390. The
return address (of the JSR $BF00) is pulled off the stack and saved at PARM.PNTR in
page zero, so that it can be used to access your command code and IOB address. Lines
1410-1490 also compute the address of the next instruction, to be used later for a
return address. This address is saved in the system global page, and is useful
sometimes for debugging. (We have published several articles on enhanced error
messages and tracers for MLI calls in previous issues of AAL.)

Lines 1500-1650 convert the command code to an index by a strange scheme. The legal
command codes are (in hex): 40, 41, 65, 80 thru 82, and C0 thru D3. The hashing
algorithm used here adds the high nybble of the command code to the whole code, and
then masks it to the lower five bits. This compresses the range of the codes, without
any overlapping.

 40,41 --> 04,05 C0-CF --> 0C-1B
 65 --> 0B D0-D2 --> 1D-1F

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 128 of 168

 80-82 --> 08-0A D3 --> 00

This index is used then to look into the COMMAND.HASH.TABLE, which has the actual
command codes in the indexed positions. If the original code is not found there, then
the original code was an illegal command number. The hash index is also used to look
up the parameter count in PARM.CNT.TABLE. I have appended the code for these two
tables to the end of today's listing, at lines 3100 to the end.

Lines 1810-1920 branch various ways according to the command code. Most of the
commands are not shown in this listing, but most of the code for READ BLOCK and WRITE
BLOCK is shown (lines 2690-3080). When a command is finished, it eventually finds its
way back to EXIT.TO.CALLER at line 2180.

Lines 2180-2560 get us back to our own code again, after the JSR $BF00. If the MLI
call produced an error, the code number for that error will be in SYS.ERRNUM. The
error code will be returned in the A-register, with carry SET. If there is no error
to report, A=0 and carry is clear.

We will probably be presenting more sections of MLI disassembly in the near future.
You may remember that we published portions of an earlier ProDOS version back in
November and December of 1983.

 1000 *SAVE S.MLI.DE00.DEF2
 1010 *--------------------------------
 1020 PARM.PNTR .EQ $40,41
 1030 COMMAND .EQ $42
 1040 UNIT.NO .EQ $43
 1050 BUFF.PNTR .EQ $44,45
 1060 BLOCK.NO .EQ $46,47
 1070 GEN.PNTR1 .EQ $48,49
 1080 GEN.PNTR2 .EQ $4E,4F
 1090 *--------------------------------
 1100 CALL.QUIT .EQ $BF03
 1110 CALL.TIME .EQ $BF06
 1120 CALL.SYSERR .EQ $BF09
 1130 SYS.ERRNUM .EQ $BF0F
 1140 DRIVER.ADDR.TABLE .EQ $BF10 thru BF2F
 1150 BACKUP.BIT .EQ $BF95
 1160 MLI.ACTIVE.FLAG .EQ $BF9B
 1170 MLI.RETURN .EQ $BF9C,D
 1180 MLI.X .EQ $BF9E
 1190 MLI.Y .EQ $BF9F
 1200 LC.BRIDGE.EXIT .EQ $BFA0
 1210 E000.BYTE .EQ $BFF4
 1220 D000.BYTE .EQ $BFF5
 1230 *--------------------------------
 1240 INTERRUPT.HANDLER .EQ $DEF3
 1250 FILING.FUNCTIONS .EQ $E047
 1260 CHECK.IF.MEM.FREE .EQ $FC9F
 1270 *--------------------------------
 1280 JUMP .EQ $FEF5,6
 1290 *--------------------------------
 1300 .OR $DE00
 1310 .TA $800
 1320 *--------------------------------
 1330 * JSR $BF00 comes here

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 129 of 168

 1340 * .DA #$xx command byte
 1350 * .DA xxxx IOB Address
 1360 *--------------------------------
 1370 MLI.ENTRY
 1380 CLD
 1390 STY MLI.Y
 1400 STX MLI.X
 1410 PLA GET RETURN ADDRESS
 1420 STA PARM.PNTR WILL POINT AT BYTES
 1430 CLC FOLLOWING JSR $BF00
 1440 ADC #4 COMPUTE ACTUAL RETURN
 1450 STA MLI.RETURN AND SAVE FOR LATER
 1460 PLA
 1470 STA PARM.PNTR+1
 1480 ADC #0
 1490 STA MLI.RETURN+1
 1500 *---Check Command Code-----------
 1510 LDY #0
 1520 STY SYS.ERRNUM
 1530 INY
 1540 LDA (PARM.PNTR),Y
 1550 LSR Hash it (CC/16 + CC) & $1F
 1560 LSR
 1570 LSR
 1580 LSR
 1590 CLC
 1600 ADC (PARM.PNTR),Y
 1610 AND #$1F
 1620 TAX Use hashcode as index
 1630 LDA (PARM.PNTR),Y Original command code
 1640 CMP COMMAND.HASH.TABLE,X
 1650 BNE ERR.CALL.NO Not valid command
 1660 *---Get IOB Address--------------
 1670 INY
 1680 LDA (PARM.PNTR),Y
 1690 PHA
 1700 INY
 1710 LDA (PARM.PNTR),Y
 1720 STA PARM.PNTR+1
 1730 PLA
 1740 STA PARM.PNTR
 1750 *---Check Parm Count-------------
 1760 LDY #0
 1770 LDA PARM.CNT.TABLE,X
 1780 BEQ MLI.GETTIME ...only one with 0 parms
 1790 CMP (PARM.PNTR),Y
 1800 BNE ERR.PARM.CNT
 1810 *---Branch Various Ways----------
 1820 LDA COMMAND.HASH.TABLE,X
 1830 CMP #$65
 1840 BEQ .1 ...QUIT CALL
 1850 ASL
 1860 BPL MLI.RWBLK $80 or $81
 1870 BCS MLI.CX.AND.DX $Cx or $Dx
 1880 LSR $40 or $41
 1890 AND #$03

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 130 of 168

 1900 JSR INTERRUPT.HANDLER
 1910 JMP EXIT.TO.CALLER
 1920 .1 JMP CALL.QUIT $65
 1930 *--------------------------------
 1940 * Command $82, Get the Date and Time
 1950 *--------------------------------
 1960 MLI.GETTIME
 1970 JSR CALL.TIME
 1980 JMP EXIT.TO.CALLER
 1990 *--------------------------------
 2000 * Commands $80 and $81
 2010 *--------------------------------
 2020 MLI.RWBLK
 2030 LSR Make $00 and 01
 2040 ADC #1 Into $01 and 02
 2050 STA COMMAND Store into command block
 2060 JSR BLOCK.IO.SETUP Do the I/O
 2070 JMP EXIT.TO.CALLER
 2080 *--------------------------------
 2090 * Commands $C0 thru $D3
 2100 *--------------------------------
 2110 MLI.CX.AND.DX
 2120 LSR Make command code into
 2130 AND #$1F an index
 2140 TAX
 2150 JSR FILING.FUNCTIONS
 2160 *---fall into EXIT routine-------
 2170 * (DE78) DE5A DE63 DE6E DEB0 callers
 2180 EXIT.TO.CALLER
 2190 LDA #0 Clear BACKUP bit
 2200 STA BACKUP.BIT
 2210 LDY SYS.ERRNUM If any error code,
 2220 CPY #1 then set carry
 2230 TYA and clear Z-bit
 2240 PHP Save this status
 2250 SEI Disable IRQ's
 2260 LSR MLI.ACTIVE.FLAG Clear this flag
 2270 PLA Get saved status
 2280 TAX and keep it in X-reg
 2290 LDA MLI.RETURN+1
 2300 PHA Put return address on stack
 2310 LDA MLI.RETURN
 2320 PHA
 2330 TXA Now push the status for RTI
 2340 PHA
 2350 TYA Get error code in A-reg
 2360 LDX MLI.X Restore X and Y
 2370 LDY MLI.Y
 2380 PHA Error code on stack
 2390 LDA E000.BYTE
 2400 JMP LC.BRIDGE.EXIT
 2410 *--------------------------------
 2420 * LC.BRIDGE.EXIT is code at $BFA0 in
 2430 * the system global page. It restores
 2440 * the language card to the state it
 2450 * was in when JSR $BF00 was exectuted.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 131 of 168

 2460 *--------------------------------
 2470 * LC.BRIDGE.EXIT EOR $E000
 2480 * BEQ .1 BFAA
 2490 * STA $C082
 2500 * BNE .2 BFB5
 2510 * .1 LDA D000.BYTE $BFF5
 2520 * EOR $D000
 2530 * BEQ .2 BFB5
 2540 * LDA $C083
 2550 * .2 PLA
 2560 * RTI
 2570 *--------------------------------
 2580 ERR.NO.DEVICE
 2590 LDA #$28 "NO DEVICE CONNECTED"
 2600 JSR CALL.SYSERR
 2610 ERR.CALL.NO
 2620 LDA #1 "BAD CALL TYPE"
 2630 BNE DEAD
 2640 ERR.PARM.CNT
 2650 LDA #4 "BAD PARAMETER COUNT"
 2660 DEAD JSR CALL.CALL.SYSERR
 2670 BCS EXIT.TO.CALLER ...ALWAYS
 2680 *--------------------------------
 2690 BLOCK.IO.SETUP
 2700 LDY #5 COPY REST OF COMMAND BLOCK
 2710 PHP FROM IOB TO ZERO-PAGE
 2720 SEI DO NOT ALLOW IRQ'S
 2730 .1 LDA (PARM.PNTR),Y
 2740 STA COMMAND,Y
 2750 DEY
 2760 BNE .1
 2770 LDX BUFF.PNTR+1
 2780 STX GEN.PNTR2+1
 2790 INX
 2800 INX
 2810 LDA BUFF.PNTR
 2820 BEQ .2
 2830 INX
 2840 .2 JSR CHECK.IF.MEM.FREE
 2850 BCS .3 ...NOT FREE
 2860 JSR BLOCK.IO
 2870 BCS .3 ...I/O ERROR
 2880 PLP RESTORE IRQ STATUS
 2890 CLC NO ERRORS
 2900 RTS
 2910 *--------------------------------
 2920 .3 PLP RESTORE IRQ STATUS
 2930 CALL.CALL.SYSERR JSR CALL.SYSERR
 2940 *--------------------------------
 2950 * (DEDA) DECE EC0A EE83 F0E4 F475 callers
 2960 BLOCK.IO
 2970 LDA UNIT.NO Clean this up a little
 2980 AND #$F0
 2990 STA UNIT.NO
 3000 LSR Make it into index too
 3010 LSR

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 132 of 168

 3020 LSR
 3030 TAX
 3040 LDA DRIVER.ADDR.TABLE,X
 3050 STA JUMP
 3060 LDA DRIVER.ADDR.TABLE+1,X
 3070 STA JUMP+1
 3080 JMP (JUMP)
 3090 *--------------------------------
 3100 .OR $FD65
 3110 .TA $800
 3120 COMMAND.HASH.TABLE
 3130 .HS D3.00.00.00.40.41.00.00
 3140 .HS 80.81.82.65.C0.C1.C2.C3
 3150 .HS C4.C5.C6.C7.C8.C9.CA.CB
 3160 .HS CC.CD.CE.CF.00.D0.D1.D2
 3170 PARM.CNT.TABLE
 3180 .HS 02.FF.FF.FF.02.01.FF.FF
 3190 .HS 03.03.00.04.07.01.02.07
 3200 .HS 0A.02.01.01.03.03.04.04
 3210 .HS 01.01.02.02.FF.02.02.02
 3220 *--------------------------------
 3230 .LIF

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 133 of 168

Another Update to Bob's ProDOS Program Selector

Bob Sander-Cederlof

December 1986

The following refers back to the new ProDOS Quit Code I wrote and published in the
July 86 issue of AAL. It has been very popular, judging from the number of letters
and phone calls we have received.

Eric Trehus (T'n'T Software) pointed out that I ignored one or more of the
conventions Apple established for Quit-Code Program Selectors. On page 87 of the
ProDOS Technical Reference Manual, the paragraph with number 2 states that the name
of the system program should be stored in a buffer at $280, starting with a length
byte. The first paragraph on page 88 says any non-standard Quit Code must begin with
a CLD instruction, so programs can tell who loaded them.

If you want the CLD instruction there, go ahead and insert one between lines 1310 and
1320. I have not found it necessary for any programs I use.

Eric says that when going from BASIC.SYSTEM to APLWORKS.SYSTEM he needed the program
name stored in $280. I have never run into the problem, but it is easy to fix. Eric
suggested inserting the following two lines:

 2065 STA $280
 2125 STA $280,Y

[Eric's change takes six bytes, so you need to be sure the code still fits in $300
bytes.]

If you do it Eric's way, only the name of the system file gets stored, without any
prefix. I wondered whether or not a full pathname should be there, so I consulted
Gary Little's "Apple ProDOS--Advanced Features" book. On page 141, near the bottom,
he says either a full or a partial pathname should be put at $280. We can get the
full pathname into $280 without Eric's two lines, by simply changing line 4860 from
"PATHNAME .BS 64" to "PATHNAME .EQ $280". This is my preference.

When I was trying out the above, I stumbled across a problem. If my Selector finds no
SYS or DIR files in a directory, it still displays the pathname and prompt messages.
If you then type the RETURN key, it may try to execute garbage, or try various other
things. The only valid keystroke when no files are listed is ESCAPE, which will take
you back to the list of volume names. Adding two lines makes it go there without
displaying the empty list:

 1771 TXA see if any files listed
 1772 BEQ .2 ...none listed, start over

We noticed the other day that when we ran Erv Edge's correction to my program (Aug
86, page 1), we reversed the information. We said change line 3390 from BNE .1 to BPL
.1; actually, it is the other way around: change from BPL to BNE. Most of you figured
that out already, but we are sorry for the confusion.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 134 of 168

Little Bugs in ProDOS /RAM

Bob Sander-Cederlof

January 1987

When a ProDOS device driver reads or writes a block, it is supposed to return an
error code in the A-register. If there was an error, this number will be nonzero, and
the Carry status bit will be set. If there was no error, the A-register is supposed
to contain zero, and Carry will be clear.

The other day I was working with a program that was supposed to read and write blocks
from the /RAM drive under ProDOS. My program printed the error code returned by the
call, and I was getting a non-zero value in the A-register even when there was no
error. I just assumed this was a trivial bug in ProDOS, and ignored it. However, I
was not using the standard ProDOS /RAM driver, because I had installed the Applied
Engineering driver which uses the entire RAMWORKS card for /RAM. Anyway, I just went
on about my business.

A few days later the January 1987 issue of Nibble arrived at my doorstep. In a letter
to the editor on page 123, from Steven Humpage, there was an explanation of the bug.
The part of the device driver that resides in Main RAM is located at $FF00. At $FF47
is a routine named EXIT, which restores some zero-page locations, restores a vector
in page 3, and returns. This code is called with either zero in A and Carry clear, or
an error code in A and carry set. The routine begins with PHP, PHA and ends with PLP,
PLA. WRONG! This swaps the P- and A-registers. Since the C-bit is bit 0 in the P-
register, a zero (from the A- register) results in carry clear. However, the P-
register con- tents come back in A, something like $36. Since the only error code the
/RAM driver returns is $27, and this has bit 0 set, swapping registers leaves carry
set. It also sets the V-bit, which could be unexpected. The error code in A now
becomes what the status was, so we get an error code of $35, I believe.

The same bug exists in AE Prodrive. The bug can easily be fixed, by the following
sequence. I am showing it as I do it from within the S-C Macro Assembler. If you do
it from within BASIC.SYSTEM, you will have to CALL-151 to get into the monitor to
install the patch.

 :UNLOCK PRODOS :UNLOCK PRODRIVE
 :BLOAD PRODOS,TSYS,A$2000 :BLOAD PRODRIVE
 :$2C5F:68 28 :$245F:68 28
 :BSAVE PRODOS,TSYS,A$2000 :BSAVE PRODRIVE
 :LOCK PRODOS :LOCK PRODRIVE

I am assuming ProDOS 1.1.1. The bug has already been fixed in version 1.2.

While we are at it, Humpage also pointed out another bug which affects both ProDOS
and Prodrive. The code which ProDOS puts into pages 2 and 3 in the AuxRAM has an
error. The CMP #$0D at $34A should be CMP #$0E. As it is it allows writing to block
7, which is then mapped back over the top of page zero and one, clobbering things
disastrously. This change write protects that block. You only need to change the
PRODOS file, because Prodrive uses it also. Change $2B4B from $0D to $0E.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 135 of 168

ProDOS-based Intelligent Disassembler

Bob Sander-Cederlof

February 1987

In response to the requests of many of you, I have at long-last developed a
disassembler which runs under ProDOS. (This new product is distinctly different from
the Rak-Ware DISASM, which runs under DOS 3.3. The Rak-Ware product is still the best
one to use if you are using DOS.) Here are some of the features of the new S-C ProDOS
DISASM:

 * Input is from one or more binary object files, including file types BIN and
SYS.
 * Output is to one or more "S-C" type (compressed source code) files.
 * Generates comment lines before each label listing all references to that label.
 * Disassembly is "script" driven, allowing incremental enhancement.
 * Input files may be positioned to specific starting addresses.
 * Decodes ProDOS "MLI" calls as such.
 * Allows pre-named symbols up to 32-characters long.

Of all the features, the most important may be the "script". This is essentially a
"program", written in "disassembly language". The script allows you to define which
input files to include and which output files to generate, to name symbols such as
monitor entry points and major subroutines in your program being disassembled, to
define table areas, and even to insert comments.

The script itself is written using the standard S-C Macro Assembler, and may be saved
on a source file just as an assembly-language program would. As you gain knowledge
about the program you are disassembling, you can add lines to the script.

Version 1.0 handles all of the 65C02 instruction set. Future enhancements which which
are definitely planned include expanding to include the entire 65816 instruction set.
Version 1.0 is for sale now for $50 including the commented source code.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 136 of 168

Some Bugs in Apple's ProDOS Version 1.3

Bob Sander-Cederlof

March 1987

Apple recently released version 1.3 of ProDOS, and sent copies to all licensees. We
started sending it out with the ProDOS version of the S-C Macro Assembler. But last
week (around March 16th) we received a letter from Apple "recalling" version 1.3. It
has two serious problems.

First, there is a "BRA" (BRanch Always) opcode in it. This means version 1.3 will not
operate in an older Apple with only a 6502 microprocessor. If you have a 65C02 or
65802 or 65816, no problem here. You are safe in a IIgs, //c, or enhanced //e. You
are also safe if you have upgraded the cpu chip yourself in an older machine. That
offending instruction could just as well be changed to a BEQ opcode, because that
would always branch in this case. With that change the 6502 machines work fine.

Second, when the Apple experts tried to implement the patch developed in Australia
and reported first by Tom Weishaar in "Open Apple" to fix an elusive disk-trashing
problem, they didn't do it right. This is the same fix I reported in the November
AAL, page 13. (Turns out I didn't report it right either, because I overlooked one
part of the patch. More on this below.) The way Apple did it causes severe problems
with two-drive systems. When you are accessing drive two, version 1.3 keeps switching
back to drive 1. If you try to use FILER to copy a volume from drive 1 to a blank
disk in drive 2, and if you remember to write-protect the disk in drive 1, FILER will
hang up with an I/O ERROR after initializing the drive 2 disk. FILER evidently
applies the drive 1 write-protect status to drive 2, and gives up. I don't even want
to experiment without having drive 1 write-protected! On the other hand, if you copy
from drive 2 to drive 1 it works, but it takes a lot longer than it should to read
each segment from the source disk in drive 2.

Both bugs can be fixed by rather simple patches. Boot up PRODOS, into either
BAISC.SYSTEM or the S-C Macro Assembler. Then load the PRODOS file, with "BLOAD
PRODOS,TSYS,A$2000". Then get into the monitor with "MNTR" from S-C Macro Assembler
or "CALL-151" from BASIC.SYSTEM. Type the following patches:

 4CCD:F0 (was 80, changing BRA to BEQ)
 5204:BD 8E C0 (was EA EA EA)
 58C3:BD 80 C0 BD 82 C0 BD 84 C0 BD 86 C0

Then get back into the system by typing "3D0G", and save the new version with "BSAVE
PRODOS,TSYS,A$2000".

The third patching line above replaces Apple's flawed loop which walked on too many
soft-switches. Apple's loop does a LDA from C080, C082, C084, and C086; this is
correct. It also does it from C088, C08A, C08C, and C08E. This is not correct. It
turns off the motor and selects drive 1. The only correct one among this group of
four was C08E, intended to be sure the selected drive is in read mode.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 137 of 168

 Old Code Apple's Loop My Patch
----------- --------------- -----------
STA $C080,X LDY #8 LDA $C080,X
STA $C082,X .1 LDA $C080,X LDA $C082,X
STA $C084,X INX LDA $C084,X
STA $C086,X INX LDA $C086,X
 DEY
 BNE .1
 NOP
 NOP

My patch puts the C08E load where Tom's Australian-connection originally put it, over
some NOPs which immediately followed the JSR to the code shown above.

Now about my incomplete patch to version 1.1.1 from last November. I omitted the "LDA
$C08E,X", which gets patched at location $5004 in this version. I also mis-typed the
address for the other patches as going at $56D3 when they actually belong at $56C3.
So, in version 1.1.1, following the same load-patch-save sequence above, the patches
are:

 5004:BD 8E C0 (was EA EA EA)
 56C3:BD 80 C0 BD 82 C0 BD 84 C0 BD
 (changing 9D's to BD's)

Version 1.4 is due out soon, and we trust Apple will have it all right this time.
Still, I am getting skittish.

Meanwhile, unless you are using a IIgs, you may wish to stick with version 1.1.1. The
only real advantage the newer versions have is automatic recognition of the IIgs
clock-calendar chip. You don't need this feature if you are not running in a IIgs.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 138 of 168

Commented Listing of ProDOS -- $DEF3-DFE4

Bob Sander-Cederlof

March 1987

As I promised last December, here is another piece of ProDOS. This time I am
unveiling the code which processes IRQ interrupts, and the handlers for the related
MLI calls. All of the following applies to version 1.1.1 of ProDOS. Later versions
may differ in this area.

The two MLI calls related to interrupts are $40 (Allocate Interrupt) and $41 (De-
Allocate Interrupt). There is room inside ProDOS for connecting up to four user-coded
routines for processing IRQ interrupts. The Allocate Interrupt call stores the
address of your routine at the next available entry in the IRQ Path Table. This table
exists in the MLI Global Page ($BF00-BFFF), and is shown in lines 1140-1170 in the
listing below. When you boot ProDOS these four entries all contain $0000, indicating
no interrupts are allocated. An MLI call of the form:

 JSR $BF00
 .DA #$40,IRQ.IOB

with an IOB like this:

 IRQ.IOB .DA #2
 IRQ.NUM .BS 1
 .DA MY.IRQ.PROCESSOR

will cause the address of MY.IRQ.PROCESSOR to be stored in the IRQ Path table. The
index into the table pointing to the entry used will be converted to an integer from
1 to 4, and stored at IRQ.NUM in the IOB. The purpose of this number is to allow you
to later de-allocate the interrupt if you wish. A call and an IOB like this will de-
allocate an interrupt:

 JSR $BF00
 .DA $41,IRQ.IOB

 IRQ.IOB .DA #1
 IRQ.NUM .BS 1 (filled in by program)

Note that the first byte if the IOB is different this time, because there is only one
parameter rather than two. It is important to de-allocate, because otherwise a sneaky
interrupt could occur which would cause ProDOS to branch after your program is gone.

Another way to de-allocate is to store zeroes directly into the IRQ Path table, but
Apple warns against this practice. It is quicker and easier, though.

There may be more than one source of IRQ interrupts in a given system. For example,
you may be using both a clock card and a modem, both with interrupts. ProDOS allows
you to have separate interrupt handlers for each of them installed. When an IRQ
occurs the first handler installed will be called first. If that handler determines
the IRQ is its own, it should process the IRQ and return with carry status clear. If
not, the handler should return with carry status set. ProDOS will try giving the

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 139 of 168

interrupt to each handler in turn, until one of them returns with carry clear. If
none of them claim the IRQ, or if there are no processors allocated, "System Death"
will occur: you will get error code $01, and a message to insert system disk and
restart. It seems a nicer approach to unclaimed interrupts would be to count it, and
continue processing. When the count exceeds some magic number, say 255, that would be
the time to go through the agony of "System Death". I would also like to know the
cause of "Death", if possible.

Lines 1400-1640 in the listing below show the code for allocating an interrupt. The
code searches the IRQ Path table for an available entry (equal to 0000), and inserts
the user's processor address in the first one found. If none are found you get error
$25, INTERRUPT TABLE FULL. Actually only the high byte of each entry is checked,
which means you cannot put an interrupt processing routine anywhere in page zero. The
MLI call will allow you to do so, and it will even work, but if you later try to
allocate another interrupt it will use the same table entry and clobber the first
one. I suppose this is a bug in ProDOS, but not too likely to cause any problem
because you are not likely to stick your code down in that page. Still, it COULD
happen.

Lines 1660-1770 de-allocate an interrupt routine. If the interrupt index number is
not in the range form 1 to 4, you will get error $53, BAD PARAMETER. Otherwise, the
indicated entry will be zeroed.

When an IRQ interrupt occurs, if the status is such that interrupts are enabled, the
processor status and the current PC-address will be pushed onto the stack; then
processing will branch to the address currently at $FFFE and FFFF. What address is
there will depend on which kind of Apple you are in, and whether ROMs or RAM are
currently switched into the $D000-FFFF area. The original Apple II monitor and also
the Apple II+ monitor vector IRQs into the $F8 monitor ROM area. A short routine
there saves some registers and separates BRKs from IRQs (because they both share the
same vector at $FFFE). IRQs then branch through another vector at $3FE and 3FF. The
various Apple //e monitors vector IRQs and BRKs to an address at $C3FA, while the //c
monitors send them to $C803.

When you boot ProDOS the installer/relocator code checks which kind of monitor you
have. If your IRQ vector points anywhere below $D000, it assumes you have a "new
style" monitor; if it points to anywhere between $D000 and $FFFF it assumes you have
an "old style" monitor. The Apple II and II+ are old style, all others are new style.
The installer/relocator stores a flag at $DFD8 so that the IRQ handler can tell what
kind of machine it is in when an IRQ occurs later. This flag is shown at lines 2650-
2710. In new style machines the vector found in ROM at $FFFE is copied into both Main
and Auxiliary RAM banks at the same address, in case an interrupt occurs when RAM is
switched on. In old style machines the address $FF9B is left in the RAM vector,
pointing to a special IRQ handler shown in lines 3060-3400 below.

The vector at $3FE,3FF is set up to point to IRQ.ENTRY, a short routine inside the
MLI Global Page. This is shown in lines 3000-3040. Since no matter what kind of
monitor is resident the IRQ eventually vectors here, I will start the explanation
here. Lines 3020-3030 turn on RAM at $D000-FFFF, so that ProDOS is accessible. It
also write enables the RAM, because the IRQ processing will be storing a value at
$DFCE, which identifies the current owner of the $C800 space (lines 1970-1980).

Lines 1800-1870 save the registers in the MLI Global Page. If you are in an old style
machine lines 1880-1950 will save the processor status and return address in the
Global Page as well.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 140 of 168

ProDOS wants to make it easier to write IRQ processors, so it also makes sure you can
use the stack and some page zero. If there are not at least 128 bytes left on the
stack it will pop off 16 bytes and save them in a special buffer; if there are at
least 128 bytes left this step is skipped. Then lines 2070-2120 save zero page
locations $FA through $FF in a special buffer. Your IRQ processor can use these six
bytes without worrying about saving and restoring them. (If you need more, you will
have to save-restore them yourself.) This is all nice, but it does add to the general
overhead for processing interrupts, which is already burdensome.

Lines 2130-2320 sequence through the installed interrupt processors until one of them
claims the IRQ. Lines 2330-2350 signal DEATH if none of the processors claim the IRQ.

If the IRQ is properly claimed, lines 2360-2410 restore the six zero page bytes;
lines 2420-2500 restore the 16 bytes of stack space if they were previously saved.
Lines 2520-2630 restore some registers and the $C800 space if you are in an old style
machine, and in any case branch to the IRQ.EXIT routine in the MLI Global Page.

IRQ.EXIT, shown in lines 2800-2960, restores the correct kind of memory (RAM or ROM)
and then executes an RTI instruction. In an old style machine if the IRQ happened
during a time when the RAM was switched on, this will send control to IRQ.EXIT.OLD,
shown in lines 3690-3740. In a new style machine, or in any machine if the ROMs were
on when the IRQ happened, the RTI will go back to the control of the monitor; exactly
where that is depends on which monitor. Normally BANK.ID.BYTE contains the value $01.
If an IRQ occurs in an old style machine when RAM is switched on, it will be changed
to $00 or $FF depending on which $D000 bank is selected. Lines 2930-2940 change it
back to $01 after one either $00 or $FF is processed.

One advantage to having both IRQ.ENTRY and IRQ.EXIT in the MLI Global Page is that
you could substitute your own code if you wish. If you want to reduce overhead, and
you know that you will always be running in a specific monitor configuration, you can
patch in here. You could also patch in through the vector at $3FE, and avoid even
more overhead. However, you would no longer be "standard".

I published a listing of lines 3070-3640 way back in December 1983, but I decided to
include it here for completeness. This code is only used in an old style machine, and
only when the IRQ occurs while RAM is switched on. The vector at $FFFE starts up the
code at line 3140. The nonsense in lines 3140-3180 regarding location $45 makes sure
we do not clobber the saved A-register. The old style monitor ROMs save the A-
register at $45 rather than on the stack. This conflicts with use of the same
location within both DOS 3.3 and ProDOS. QUESTION: Wouldn't it have been both easier
and better to avoid using locaton $45 inside ProDOS? Kludge on top of kludge, if you
ask me.

Lines 3290-3340 set up fake data on the stack for later use by an RTI instruction.
Lines 3350-3380 do the same for an RTS instruction. Note that RTS requires an address
with is one less than the actual address, while RTI requires the address un-modified.
RTS pops the address, adds one, and branches; RTI pops the address and status, and
branches without adding one. Line 3400 switches back to ROM. This means the next
instruction will be executed from $FFCB in ROM, which is ALWAYS an RTS. Anyway it had
BETTER be! If you ever make your own monitor ROM, be sure to leave an RTS here. (You
will also need an RTS at $FF58, because a lot of I/O firmware expects that one is
there.)

Lines 3420-3470 are executed in the old style machines if RAM is switched on when you
hit RESET. That is, if you have the particular type of RAM card which leaves the F8

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 141 of 168

area switched on when you hit RESET. Many of them switch back to ROM when RESET
occurs. Just in case, the code is here.

That about wraps it up. But it still leaves a lot of mystery in that part of IRQ
processing which occurs inside the monitor ROMs. Each monitor version has its own
unique code. The Apple II was simple, the II+ about the same. The three versions of
//e and three versions of //c monitors of which I am aware are all mutually
different. The IIgs is even more so. Perhaps in a future article we can rationalize
them all.

 1000 *SAVE MLI.IRQ
 1010 *--------------------------------
 1020 PARM.PNTR .EQ $40,41
 1030 COMMAND .EQ $42
 1040 SAVE.A .EQ $45
 1050 *--------------------------------
 1060 CURRENT.ROM.SLOT .EQ $07F8 $C0 + Slot which owns $C800.
 1070 *--------------------------------
 1080 CALL.SYSERR .EQ $BF09
 1090 CALL.DEATH .EQ $BF0C
 1100 *--------------------------------
 1110 SAVE.LOC45 .EQ $BF56 Used if in Apple II or II+
 1120 SAVE.D000 .EQ $BF57 ditto
 1130 *--------------------------------
 1140 IRQ.PATH.1 .EQ $BF80 These are 0000 if not allocated,
 1150 IRQ.PATH.2 .EQ $BF82 address of user IRQ handler
 1160 IRQ.PATH.3 .EQ $BF84 if allocated.
 1170 IRQ.PATH.4 .EQ $BF86
 1180 *--------------------------------
 1190 IRQ.A .EQ $BF88
 1200 IRQ.X .EQ $BF89
 1210 IRQ.Y .EQ $BF8A
 1220 IRQ.S .EQ $BF8B
 1230 IRQ.P .EQ $BF8C
 1240 BANK.ID.BYTE .EQ $BF8D
 1250 IRQ.RETURN .EQ $BF8E,BF8F
 1260 *--------------------------------
 1270 IO.RESET.ROMS .EQ $CFFF De-select $C800 space.
 1280 *--------------------------------
 1290 IRQ.SV .EQ $FEDF thru $FEEE (16 bytes saved from STACK)
 1300 *--------------------------------
 1310 .PH $DEF3
 1320 *--------------------------------
 1330 * Handle $40 and $41 MLI calls
 1340 *--------------------------------
 1350 * (DEF3) DE57
 1360 INTERRUPT.HANDLER
 1370 STA COMMAND Save in case anyone cares later.
 1380 LSR $40 or $41, lsb into CARRY
 1390 BCS .5 ...$41 is DEALLOCATE
 1400 *---$40 is ALLOCATE--------------
 1410 LDX #3 FOR X = 3 TO 9 STEP 2
 1420 .1 LDA IRQ.PATH.1-2,X
 1430 BNE .2 ...ALREADY ALLOCATED
 1440 LDY #3 FOUND HOLE, INSTALL IRQ
 1450 LDA (PARM.PNTR),Y

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 142 of 168

 1460 BEQ .3 BAD PARAMETER
 1470 STA IRQ.PATH.1-2,X
 1480 DEY
 1490 LDA (PARM.PNTR),Y
 1500 STA IRQ.PATH.1-3,X
 1510 TXA GIVE IRQ# TO CALLER
 1520 LSR MAKE 3,5,7,9 INTO 1,2,3,4
 1530 DEY
 1540 STA (PARM.PNTR),Y
 1550 CLC Signal NO ERROR
 1560 RTS
 1570 .2 INX Next X
 1580 INX
 1590 CPX #11
 1600 BNE .1
 1610 LDA #$25 "INTERRUPT TABLE FULL"
 1620 BNE .4 ...ALWAYS
 1630 .3 LDA #$53 "BAD PARAMETER"
 1640 .4 JSR CALL.SYSERR (NEVER RETURNS)
 1650 *---$41 is DEALLOCATE------------
 1660 .5 LDY #1
 1670 LDA (PARM.PNTR),Y
 1680 BEQ .3 ...0 is illegal value
 1690 CMP #5 Must be 1,2,3,4
 1700 BCS .3 ...too large
 1710 ASL DOUBLE FOR INDEX
 1720 TAX
 1730 LDA #0 CLEAR THE ENTRY
 1740 STA IRQ.PATH.1-2,X
 1750 STA IRQ.PATH.1-1,X
 1760 CLC Signal NO ERROR
 1770 RTS
 1780 *--------------------------------
 1790 * If an IRQ occurs, we eventually get HERE.
 1800 *--------------------------------
 1810 IRQ.HANDLER
 1820 LDA SAVE.A
 1830 STA IRQ.A
 1840 STX IRQ.X
 1850 STY IRQ.Y
 1860 TSX
 1870 STX IRQ.S
 1880 LDA ENHANCE.FLAG
 1890 BNE .1 ...In a "new style" monitor
 1900 PLA ...In an Apple II or II+ monitor
 1910 STA IRQ.P Save P-reg and RETURN address
 1920 PLA
 1930 STA IRQ.RETURN
 1940 PLA
 1950 STA IRQ.RETURN+1
 1960 .1 TXS Keep P-reg and RETURN on stack
 1970 LDA CURRENT.ROM.SLOT Save $C800 Slot
 1980 STA ROM.PAGE.BYTE
 1990 *---Save some stack, maybe-------
 2000 TSX If in bottom half of stack,
 2010 BMI .3 then save 16 bytes of it.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 143 of 168

 2020 LDY #15 SAVE 16 BYTES FROM STACK
 2030 .2 PLA
 2040 STA IRQ.SV,Y
 2050 DEY
 2060 BPL .2
 2070 *---Save some page zero----------
 2080 .3 LDX #$FA SAVE 6 BYTES FROM PAGE ZERO
 2090 .4 LDA 0,X $FA...FF
 2100 STA IRQ.SV-$FA+16,X
 2110 INX
 2120 BNE .4
 2130 *---Call to first IRQ vector-----
 2140 LDA IRQ.PATH.1+1
 2150 BEQ .5 IRQ#1 EMPTY
 2160 JSR IRQ.1 Try this IRQ level
 2170 BCC .9 ...IRQ Claimed, Now Exit
 2180 *
 2190 .5 LDA IRQ.PATH.2+1
 2200 BEQ .6 IRQ#2 EMPTY
 2210 JSR IRQ.2 Try this IRQ level
 2220 BCC .9 ...IRQ Claimed, Now Exit
 2230 *
 2240 .6 LDA IRQ.PATH.3+1
 2250 BEQ .7 IRQ#3 EMPTY
 2260 JSR IRQ.3 Try this IRQ level
 2270 BCC .9 ...IRQ Claimed, Now Exit
 2280 *
 2290 .7 LDA IRQ.PATH.4+1
 2300 BEQ .8 IRQ#4 EMPTY
 2310 JSR IRQ.4 Try this IRQ level
 2320 BCC .9 ...IRQ Claimed, Now Exit
 2330 *---No IRQ vectors alive!--------
 2340 .8 LDA #$01 Un-claimed Interrupt Error
 2350 JSR CALL.DEATH (NEVER RETURNS)
 2360 *---IRQ PROCESSING COMPLETE------
 2370 .9 LDX #$FA RESTORE $FA...FF
 2380 .10 LDA IRQ.SV-$FA+16,X
 2390 STA 0,X
 2400 INX
 2410 BNE .10
 2420 *---If saved, restore stack------
 2430 LDX IRQ.S
 2440 BMI .12 16 BYTES FROM STACK NOT SAVED
 2450 LDY #0 RESTORE 16 BYTES TO STACK
 2460 .11 LDA IRQ.SV,Y
 2470 PHA
 2480 INY
 2490 CPY #16
 2500 BNE .11
 2510 *---Choose EXIT routine----------
 2520 .12 LDA ENHANCE.FLAG
 2530 BNE IRQXIT ..."New style" monitor ROMs
 2540 LDY IRQ.Y ...Apple II or II+ monitor.
 2550 LDX IRQ.X
 2560 LDA IO.RESET.ROMS Turn off $C800 bank
 2570 LDA $CF00 Select Interrupted $C800 bank

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 144 of 168

 2580 * (DFCE) DF5E DFCF (Hi-byte filled in)
 2590 ROM.PAGE.BYTE .EQ *-1 (Self-modifying code!)
 2600 LDA ROM.PAGE.BYTE
 2610 STA CURRENT.ROM.SLOT
 2620 * (DFD5) DFC1
 2630 IRQXIT JMP IRQ.EXIT
 2640 *--------------------------------
 2650 * (DFD8) DF49 DFBE
 2660 ENHANCE.FLAG .HS 00 (Set to 01 by relocator if new
 2670 * type ROM is found)
 2680 * ((If IRQ vector in ROM at $FFFE,F points below
 2690 * $D000, it is "new type". The "old type",
 2700 * which is the original $F8 ROM in the Apple II
 2710 * or that of the Apple II+, points to $Fxxx.))
 2720 *--------------------------------
 2730 * (DFD9-E2) DF7C DF86 DF90 DF9A
 2740 IRQ.1 JMP (IRQ.PATH.1)
 2750 IRQ.2 JMP (IRQ.PATH.2)
 2760 IRQ.3 JMP (IRQ.PATH.3)
 2770 IRQ.4 JMP (IRQ.PATH.4)
 2780 *--------------------------------
 2790 .PH $BFD0
 2800 *--------------------------------
 2810 * IRQ ENTRY/EXIT CODE IN GLOBAL PAGE
 2820 *--------------------------------
 2830 IRQ.EXIT
 2840 LDA BANK.ID.BYTE
 2850 IRQ.EXIT.1
 2860 BEQ .2
 2870 BMI .1
 2880 LSR
 2890 BCC .3
 2900 LDA $C081 Switch on ROMs at D000-FFFF
 2910 BCS .3 ...ALWAYS
 2920 .1 LDA $C083 Switch on RAMs at D000-FFFF
 2930 .2 LDA #1
 2940 STA BANK.ID.BYTE
 2950 .3 LDA IRQ.A
 2960 RTI
 2970 *--------------------------------
 2980 * An IRQ interrupt comes here when it occurs
 2990 * because of the vector at $3FE,3FF.
 3000 *--------------------------------
 3010 IRQ.ENTRY
 3020 BIT $C08B Switch on and write-enable
 3030 BIT $C08B RAM at D000-FFFF
 3040 JMP IRQ.HANDLER
 3050 *--------------------------------
 3060 .PH $FF9B
 3070 *--------------------------------
 3080 * IRQ CODE FOR APPLE II AND II+ MONTOR ROMS
 3090 * This code is used when IRQ happens while
 3100 * the RAM at D000-FFFF is switched on (inside
 3110 * an MLI call, for example) if we have the
 3120 * "new style" monitor ROMs.
 3130 *--------------------------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 145 of 168

 3140 IRQ PHA SAVE A-REG
 3150 LDA SAVE.A ALSO SAVE SAVE.A
 3160 STA SAVE.LOC45
 3170 PLA NOW PUT A-REG INTO SAVE.A
 3180 STA SAVE.A
 3190 PLA PEEK AT STATUS
 3200 PHA
 3210 AND #$10 WAS IT "BRK"?
 3220 BNE .2 ...YES, LET MONITOR HANDLE IT
 3230 LDA $D000 CHECK WHETHER D000 BANK 1 OR 2
 3240 EOR #$D8 "CLD" OPCODE
 3250 BEQ .1 ...IN D000 BANK 1
 3260 LDA #$FF ...IN D000 BANK 2
 3270 .1 STA BANK.ID.BYTE
 3280 STA SAVE.D000
 3290 LDA /IRQ.EXIT.OLD PUSH FAKE "RTI" VECTOR
 3300 PHA
 3310 LDA #IRQ.EXIT.OLD
 3320 PHA
 3330 LDA #$04
 3340 PHA
 3350 .2 LDA /$FA41 PUSH FAKE "RTS" VECTOR INTO
 3360 PHA MONITOR ROM
 3370 LDA #$FA41
 3380 PHA
 3390 CALL.MONITOR
 3400 STA $C082 SWITCH TO MOTHERBOARD ROMS,
 3410 * WHERE THERE IS AN "RTS" OPCODE
 3420 *--------------------------------
 3430 RESET LDA RESET.VECTOR+1
 3440 PHA PUSH FAKE "RTS" INTO MONITOR
 3450 LDA RESET.VECTOR
 3460 PHA
 3470 JMP CALL.MONITOR
 3480 *--------------------------------
 3490 RESET.VECTOR .DA $FA61 MON.RESET-1
 3500 *--------------------------------
 3510 IRQ.SPLICE
 3520 STA IRQ.A
 3530 LDA SAVE.LOC45
 3540 STA SAVE.A
 3550 LDA $C08B FINISH WRITE-ENABLING RAM
 3560 LDA SAVE.D000
 3570 JMP IRQ.EXIT.1
 3580 *--------------------------------
 3590 .BS $FFFA-* <<<EMPTY SPACE>>>
 3600 *--------------------------------
 3610 V.NMI .DA $03FB
 3620 V.RESET .DA RESET
 3630 V.IRQ .DA IRQ (Replaced by relocator with
 3640 * the value from ROM vector if
 3650 * the machine has "new style" monitor.
 3660 *--------------------------------
 3670 .PH $BF50
 3680 *--------------------------------
 3690 * LITTLE PIECE OF IRQ EXIT CODE USED WITH

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 146 of 168

 3700 * OLD TYPE MONITOR ROMS
 3710 *--------------------------------
 3720 IRQ.EXIT.OLD
 3730 LDA $C08B SWITCH RAM ON, D000 BANK 1
 3740 JMP IRQ.SPLICE
 3750 *--------------------------------
 3760 .LIST OFF

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 147 of 168

New Supplement to "Beneath Apple ProDOS" Available

Bob Sander-Cederlof

April 1987

Quality Software has published a new supplement to for "Beneath Apple ProDOS," which
includes information on ProDOS versions 1.2 and 1.3. It is 30 pages longer than the
previous edition, which covered version 1.1.1 of ProDOS.

You might be wondering, "What is a supplement, anyway?" The book "Beneath Apple
ProDOS" ("BAP") contains much reference material needed to really take advantage of
ProDOS capabilities. While other books now cover much of the same ground, "BAP" was
the first one to put it all into print. The supplement, however, is unique: it
contains a complete description of the internal details of both the ProDOS MLI kernel
and BASIC.SYSTEM. If you are at all involved with the inner works of ProDOS, or are
having trouble finding out the REAL scoop on some issues, you NEED the supplement. I
have used my copies extensively, and depended heavily on it when writing the ProDOS
version of S-C Macro Assembler.

The original supplement, for versions 1.0.1 and 1.0.2 cost $10. The second and third
editions are $12.50 each. Incredibly low-priced! You must order these directly from
Quality Software, at 21610 Lassen Street #7, Chatsworth, CA 91311. As I understand
it, the supplement is only sold to owners of "BAP", and you have to use the coupon
found on page 8-9 of "BAP" to do the ordering. ("BAP" itself is $19.95 retail, but we
sell it for $18 here.)

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 148 of 168

Missing ProDOS Books

May 1987

We had a scare a couple of weeks ago: Quality Software and Simon & Schuster had both
run out of copies of Beneath Apple ProDOS, that excellent reference on the inner
workings of ProDOS, so it looked for a while like we might lose a valuable resource.
All is well, though, the folks at Quality are planning a new printing, so we expect
to have more copies of the book in a month or two. We'll just hold any orders until
that time.

Curiously, both Addison-Wesley's ProDOS Technical Reference Manual and Simon &
Schuster's Apple ProDOS: Advanced Features for Programmers have been out of stock at
the publishers for a couple of months now. A-W tells us that a revised edition of
Apple's manual will be published in late June. S & S has Advanced Features on
backorder, but won't quote even a tentative delivery date.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 149 of 168

More About Patching Apple's ProDOS Releases

Bob Sander-Cederlof

May 1987

You remember in our March issue we talked about patches to fix Version 1.3 of ProDOS.
Apple has pulled this version off the market, but there are still a lot of copies
floating around. The patches we gave in the March article should make ProDOS 1.3 as
good as any other version, but who knows?

Anyway, we heard through the grapevine that some unofficial copies of version 1.4 are
out, and that a brand new bug has surfaced in this one. It seems someone put a "LDA
$C09C,X" where "LDA $C08E,X" should be.

I ran across a listing in the Washington Apple Pi newsletter (May 1987 issue, page
16) of an Applesoft program which can install all known necessary patches in versions
1.1.1, 1.2, 1.3, and 1.4 of ProDOS. The program was originally written by Stephen
Thomas to fix version 1.1.1, when the problem of the four STA's to the stepper motor
soft-switches was discovered. (See Nov 86 AAL) Later Glen Bredon modified it to make
the corresponding patches to later versions, as well as to fix the additional new
bugs. I have further modified it, in an attempt to make it easier to understand.

 100 TEXT : HOME :E = 0: PRINT "PRODOS PATCH PROGRAM"
 110 IF PEEK (116) < 128 THEN E = 1: GOTO 900: REM ENUF MEM?
 120 ONERR GOTO 900
 130 REM ---READ PRODOS FILE---
 140 PRINT CHR$ (4)"UNLOCK PRODOS"
 150 PRINT CHR$ (4)"BLOAD PRODOS,TSYS,A$2000"

 200 REM ---SEARCH $4000-$60FF FOR PATTERN---
 210 V = 1: FOR B = 64 TO 96:A = B * 256
 220 IF PEEK (A + 4) < > 189 THEN 250
 230 IF PEEK (A + 5) < > 156 THEN 290
 240 IF PEEK (A + 6) = 192 THEN V = 3:B = 96: GOTO 290: REM VERSION 1.4
 250 IF PEEK (A + 4) < > 234 THEN 290
 260 IF PEEK (A + 5) < > 234 OR PEEK (A + 6) < > 234 THEN 290
 270 IF PEEK (A + 7) < > 234 OR PEEK (A + 8) < > 234 THEN 290
 280 V = 2:B = 96: REM VERSION BEFORE 1.4
 290 NEXT B:E = 2: ON V GOTO 900,300,700

 300 REM ---FOUND VERSION BEFORE 1.4---
 310 POKE A + 4,189: POKE A + 5,142: POKE A + 6,192: REM "LDA $C08E,X"

 400 REM ---LOOK FOR OTHER PATCH AREA---
 410 A = PEEK (A + 2) + 256 * PEEK (A + 3) - 13 * 4096 + A + 5
 420 E = 3: IF A < 4 * 4096 OR A > 6 * 4096 THEN 900
 430 IF PEEK (A) < > 157 OR PEEK (A + 3) < > 157 THEN 500
 440 IF PEEK (A + 6) < > 157 OR PEEK (A + 9) < > 157 THEN 500

 450 REM ---FOUND VERSION 1.1.1 OR 1.2, SO CHANGE "STA" TO "LDA"---
 460 FOR I = 0 TO 9 STEP 3: POKE A + I,189: NEXT I
 470 V$ = "1.1.1": GOTO 800

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 150 of 168

 500 REM ---VERSION 1.3---
 510 FOR I = 0 TO 12: READ B: IF PEEK (A + I) < > B THEN GOTO 900
 520 NEXT I: DATA 160,8,189,128,192,232,232,136,208,248,234,234,96
 530 FOR I = 0 TO 11: READ B: POKE A + I,B: NEXT I
 540 DATA 189,128,192, 189,130,192, 189,132,192, 189,134,192
 550 A = 4 * 4096 + 12 * 256 + 12 * 16 + 13: REM ADDRESS = $4CCD
 560 FOR I = 0 TO 3: READ B: IF PEEK (A + I) < > B THEN 900
 570 NEXT I: POKE A,240: REM CHANGE "BRA" TO "BEQ"
 580 V$ = "1.3": GOTO 800
 590 DATA 128,6,190,0

 700 REM ---VERSION 1.4---
 710 POKE A + 5,142: REM "LDA $C09C,X" TO "LDA $C08E,X"
 720 V$ = "1.4"

 800 REM ---WRITE PATCHED VERSION ON DISK---
 810 PRINT CHR$ (4)"BSAVE PRODOS,TSYS,A$2000"
 820 PRINT CHR$ (4)"LOCK PRODOS"
 830 PRINT "PATCHES COMPLETED TO VERSION "V$: END

 900 REM ---ERROR HANDLER---
 910 PRINT CHR$ (7)"ERROR! NO PATCHES WERE MADE."
 915 ON E GOTO 930,940,950
 920 PRINT "PRODOS FILE NOT FOUND.": END
 930 PRINT "NOT ENOUUGH ROOM TO LOAD PRODOS.": END
 940 PRINT "PATCH LOCATION NOT FOUND.": END
 950 PRINT "PRODOS FILE MAY HAVE BEEN PATCHED,"
 960 PRINT "ALREADY, OR IS NOT A COMPATIBLE VERSION."
 970 END

Lines 100-150 read the ProDOS system file into memory. Then Lines 200-290 search
every page from $4000 through $60FF for either five NOPs starting at $xx04 or a "LDA
$C09C,X" instruction at $xx04. If neither is found, nothing is patched. If the five
NOPs are found, we have version 1.1.1, 1.2, or 1.3. If the LDA is found, we have
version 1.4. If it is version 1.4, the only patch needed is to change it to "LDA
$C08E,X", which is done at lines 700-720.

Older versions all need "LDA $C08E,X" poked where the five NOPs were, so line 310
takes care of this. Then we look at the address in the operand field of the
instruction just prior to the five NOPs. This is a JSR to a little subroutine which
we need to modify. Line 410 computes the location within the system file image for
the twelve bytes we need to change.

There are several possible versions of this subroutine. If it is a series of "STA
$C08x,X" instructions, we have version 1.1.1 or 1.2 and the STA opcodes should be
changed to LDA opcodes. Lines 430 and 440 test for STA opcodes, and lines 450-470
make the changes. On the other hand, if the subroutine is like Apple put in version
1.3 we will replace it with a series of four LDAs just like we made in the older
versions. Lines 500-590 handle this, and also change an errant "BRA" opcode to a
"BEQ" opcode.

Finally, lines 800-830 write out the modified code and re-LOCK the file. I would be
careful to check the changes made before doing this to every copy I own, if I were
you. And bear in mind that Apple as a company has never authorized any of these
changes. (They have only made them necessary, by their own incorrect changes.)

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 151 of 168

While this article was waiting for the press, Apple finally sent out correct copies
of version 1.4. I received my master copy June 1st, and checked it against our
patched version 1.3. They were identical except for the copyright dates and version
numbers. The official date on this GOOD version 1.4 is April 17, 1987.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 152 of 168

Correction to ProDOS Patcher

Bob Sander-Cederlof

June 1987

Mike McConnell called with a correction to my Applesoft ProDOS Patcher that affected
its ability to find and fix versions 1.1.1 and 1.2. Lines 430 and 440 PEEKed at A,
A+1, A+2, and A+3; in fact they should be PEEKing at A, A+3, A+6, and A+9. Change
those two lines to:

 430 IF PEEK(A)<>157 OR PEEK(A+3)<>157 THEN 500
 440 IF PEEK(A+6)<>157 OR PEEK(A+9<>157 THEN 500

Then I noticed an error in the REMark at line 450. What it should say is:

 450 REM ---FOUND VERSION 1.1.1 OR 1.2,
 SO CHANGE "STA" TO "LDA"---

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 153 of 168

Review: "Apple IIgs ProDOS-16 Reference"

Bob Sander-Cederlof

July 1987

Apple says this is "a manual for software developers, advanced programmers, and
others who wish to understand the technical aspects of the Apple IIgs operating
system." Here is a brief run-down of the contents:

Chapters 1-5 -- About P16 (Files, Memory Management, External Devices, and the
Operating Environment)

Chapter 6 -- Programming with P16 (Revising a ProDOS-8 Application, and Using the
Apple IIgs Programmer's Workshop)

Chapter 7 -- Adding Routines to P16 (Interrupt Handlers)

Chapters 8-13 -- Making P16 Calls (Complete description of all of the MLI calls
supported by P16)

Chapters 14-17 -- The System Loader (How to use the system loader to load and
relocate programs, including a description of the 16 System Loader Calls.)

Appendix A -- P16 File Organization (Exactly the same as ProDOS-8, except that more
file types are defined)

Appendix B -- Comparison of Apple II Operating Systems

Appendix C -- The ProDOS 16 Exerciser (Tells about the disk which comes with the
book)

Appendix D -- System Loader Technical Data (Most of the information about the Object
module format expected by the System Loader. More detail will be available someday in
the "Apple IIgs Programmer's Workshop Reference".)

Appendix E -- Complete list of Error Codes for P16 and the System Loader

There is a good index, as well as a glossary. And to cap it off, a rather complete
Reference Card. The card is printed with major headings in red ink, to make it easier
to locate items in a hurry. It totals eight full-size pages, and includes all of the
MLI calls, System Loader calls, and Error Codes. Most of the info you need to
understand and build file description blocks is also included.

All of the important information is here. However, there are no programming examples.
I suspect there were not any good ones available at the time the book was written. We
still feel the need for a book like Gary Little's "Apple ProDOS Advanced Features"
(which we cannot get anymore) which would lead us through step-by-step in writing
ProDOS-16 programs. Gary's book was for the old ProDOS-8, but he or someone should
bring out a ProDOS-16 book like it. We also wish Don Worth and Pieter Lechner would
give us the equivalent to "Beneath Apple DOS" and "Beneath Apple ProDOS". This is
probably asking too much, considering the size of the job.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 154 of 168

The publisher's price for this 338-page book is $29.95, and it will be available at
most bookstores. Or, you can order it from us for $27, plus shipping.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 155 of 168

Another ProDOS-8 Bug in the IIgs

Bob Sander-Cederlof

July 1987

Back in December of 1986 we noticed that a target file written from the ProDOS S-C
Macro Assembler when running on a IIgs contained garbage from locations $9B through
$FF of every page of the file. We patched the Assembler at that time and made it work
correctly, blaming the new version of ProDOS.

The problem seemed to be related to the fact that target file processing used a one-
byte data buffer at location $009A (yes, in page zero). Now, there is nothing in any
ProDOS documentation warning against using a data buffer in page zero. Furthermore,
ProDOS does not return any error code for such a buffer. I assume, and I still think
I am correct, that the designers of ProDOS expected this to be legal. Nevertheless,
it does not work correctly in the IIgs.

It turns out ProDOS was only indirectly at fault. Both the old and the new versions
of ProDOS-8 show the same failure, but it is due to the 65816 processor rather than
any changes to the ProDOS code.

The code at fault is the subroutine which transfers bytes of data from the caller's
data buffer into the file buffer. This subroutine is at $F326 in ProDOS 1.1.1; it is
at $F311 in versions 1.2, 1.3, and 1.4. The file buffer is the one specified when MLI
was called to OPEN the file. (The one that always has to begin on a page boundary.)

This subroutine uses pointers at $4E,4D and $4C,4D to access the data buffer and file
buffer, respectively. To simplify indexing, a trick is used. It is the trick that
causes it to fail with pagezero data buffers in a IIgs.

A subroutine at $F110 (in version 1.1.1) or $F0F8 (later versions) sets up the two
pointers. The pointer to the data buffer is modified to point some distance BEFORE
the actual data buffer. The distance is equivalent to the low-order byte of the
current file MARK. This way the same Y-register value can be used to index both the
data and file buffers. Except in a IIgs, when the data buffer is in page zero.

For example, here are the data buffer pointer and Y-register values for three cases
that might occur during a ".TF" write:

 data buffer at $009A
 file buffer at $7C00
 eff.addr eff.addr
 mark $4E,4F Y-reg non-IIgs IIgs
 ----- ------ ----- -------- --------
 $xx99 $0001 $99 $009A $00/009A
 $xx9A $0000 $9A $009A $00/009A
 $xx9B $FFFF $9B $009A $01/009A

Notice that the last value on the last line has bank 1, rather than bank 0! For an
explanation of how this happens, see the last paragraph on page 119 of "Programming
the 65816" by Eyes & Lichty. Whenever an indexed instruction specifies a 16-bit
address and assumes the data bank as its bank, then, if the index plus the base

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 156 of 168

exceeds $FFFF the effective address will be in the next bank. (This allows data
tables to straddle bank boundaries.)

What happens then, during a write? All bytes from $xx00 through $xx9A of each 256
bytes (in the case of my .TF processor) are written correctly. Bytes from $xx9B
through $xxFF are taken instead from bank 1, location $009A (the AUX bank). Whatever
data exists there will be written on the file.

I wanted to test out my theories, so I wrote a quick and dirty little program to OPEN
a file, WRITE 256 data bytes on it, and CLOSE it. I ran it using both versions 1.1.1
and 1.4 of ProDOS-8, and on both an Apple //e and a IIgs. Both versions of ProDOS
worked correctly on the //e, and both failed on the IIgs.

My test program is so "quick and dirty" that you have to CREATE the file directly
before running the program. If you want to try it, type "CREATE TESTFILE,TTXT" before
running the program. Then to look at the data, type "BLOAD TESTFILE,A$2000,TTXT" and
use the monitor to print out the contents of $2000-20FF. You may also need to change
the pathname to that of your test disk.

By the way, the very same problem exists for READ calls using a data buffer in page
zero. For example, using a one-byte buffer at $009A would cause all bytes within the
file which are at posiitons $xx9B through $xxFF to stored at $01009A in a IIgs.
Apparently nobody has tried this yet.

The current ProDOS version of the S-C Macro Assembler works correctly in the IIgs.
There have been three changes to make this possible. First, we changed to the most
recent release of the PRODOS file. Second, I moved my .TF buffer out of page zero.
Third, I modified the "$" monitor section to work with the new IIgs monitor. (This
version still works in all older machines as well.) If you have recently acquired a
IIgs and need an upgrade to your S-C Macro Assembler, let us know.

Don't you suppose that there are more programs out there besides ProDOS which could
stumble over this difference in the way indexing works? And more besides our
Assembler which will stumble over this quirk in ProDOS? Be wary.

 1000 *SAVE S.TEST.WPZ
 1010 *--------------------------------
 1020 * TEST WRITING FROM A BUFFER IN PAGE ZERO
 1030 *--------------------------------
 1040 DATABUF .EQ $9B
 1050 MLI .EQ $BF00
 1060 PRBYTE .EQ $FDDA
 1070 *--------------------------------
 1080 T
 1090 JSR MLI OPEN THE FILE
 1100 .DA #$C8,IOB.OPEN
 1110 BCS .99 ERROR
 1120 LDA O.REF GET THE REFERENCE NUMBER
 1130 STA W.REF
 1140 *--------------------------------
 1150 LDA #0 WRITE $00...$FF ON THE FILE
 1160 STA DATABUF
 1170 .1 JSR MLI
 1180 .DA #$CB,IOB.WRITE
 1190 BCS .99 ERROR
 1200 INC DATABUF

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 157 of 168

 1210 BNE .1
 1220 *--------------------------------
 1230 JSR MLI
 1240 .DA #$CC,IOB.CLOSE
 1250 BCS .99 ERROR
 1260 RTS
 1270 *--------------------------------
 1280 .99 JMP PRBYTE PRINT THE ERROR CODE
 1290 *--------------------------------
 1300 IOB.OPEN
 1310 .DA #3
 1320 .DA PATHNAME
 1330 .DA FILEBUF
 1340 O.REF .BS 1
 1350 *--------------------------------
 1360 IOB.WRITE
 1370 .DA #4
 1380 W.REF .BS 1
 1390 .DA DATABUF
 1400 .DA 1
 1410 ACTLEN .BS 2
 1420 *--------------------------------
 1430 IOB.CLOSE
 1440 .DA #1
 1450 .DA #0
 1460 *--------------------------------
 1470 PATHNAME
 1480 .DA #PSZ-1
 1490 .AS "/TEST/TESTFILE"
 1500 PSZ .EQ *-PATHNAME
 1510 *--------------------------------
 1520 .BS *+255/256*256-* FORCE PAGE BOUNDARY
 1530 FILEBUF .BS 512 FOR FILE BUFFER
 1540 *--------------------------------
 9999 .LIF

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 158 of 168

How to Clear the Back-Up Bit

Bob Sander-Cederlof

October 1987

I received a letter from Paul R. Santa-Maria today, with a very good question: "How
is the backup bit in the file access byte cleared in ProDOS 8?" Paul is writing a
program that can use the backup bit, but he needs to be able to clear it.

The information about this bit in the various reference manuals is contradictory and
incomplete. Apple's ProDOS Technical Reference Manual (even the new ProDOS-8 edition)
says:

ProDOS sets bit 5, the backup bit, of the access field to 1 whenever the file is
changed (that is, after a CREATE, RENAME, CLOSE after WRITE, or SET_FILE_INFO
operation). This bit should be reset to 0 whenever the file is duplicated by a backup
program.

Note: ONly ProDOS may change bits 2-4; only backup programs should clear bit 5, using
SET_FILE_INFO.

As Paul pointed out in his letter, these two paragraphs contradict each other. Other
references to "backup bit" listed in the index did not clear up the difficulty.

Paul noticed that one of the bytes in the System Global Page is called BUBIT (at
$BF95). The only explanation of this bit is that it can be changed before MLI calls,
and a comment "BACKUP BIT DISABLE, SETFILEINFO ONLY".

Neither of us could find any further information in Apple's manuals, or even in the
various third-party books.

I did get some help from the supplement to "Beneath Apple ProDOS", and also from my
Apple itself. First I did a search of the ProDOS code while it was in RAM and found
two references to $BF95, at $DE7A and at $F7EF. (These are the addresses in Version
1.1.1, and are slightly different from the addresses in Version 1.2, 1.3, and 1.4.)
The first reference is at the general exit from all MLI calls, and it stores a zero
at $BF95 (BUBIT). The second is inside the SET FILE INFO processor. Here is a piece
of the code:

 F7EF- LDA BUBIT
 EOR #$20
 AND $FE7D CURRENT ACCESS BITS
 AND #$20 ISOLATE BACKUP BIT
 STA $FEB4

According to the BAP Supplement, $FEB4 is later ORed into the Access Bits,
immediately before the update is complete.

Apparently the steps necessary to clear the backup bit are:

 1. read the current file information using GET FILE INFO;
 2. clear the backup bit in the access byte and set at least bit 5 of $BF95 to 1;
 3. and use SET FILE INFO to install the change.

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 159 of 168

I wrote a test program to perform those steps, and it worked!

My program displays some information, so that I can see what it has done. Line 1170
reads the current file info and displays it in hex. The first byte displayed is the
byte with the access bits. Lines 1180-1200 clear bit 5, the backup bit, in the access
byte. Line 1210 changes BUBIT ($BF95) from $00 to $FF, so that SET FILE INFO will not
set the backup bit. Lines 1220-1240 call MLI to SET FILE INFO. Finally, lines 1260-
1380 read the file info and display it again, to see if it worked.

To make my test program simple, I assembled the pathname of a file I knew was on the
mounted volume. The pathname is in line 1480. You should substitute here the name of
the file you really want to play with.

By the way, there is another way to clear the backup bit. You can read and write
directory sectors directly, using the READ_BLOCK and WRITE_BLOCK calls. If you are
writing a super snazzy backup program, you may want to do it this way. It can be
easier to follow the directory tree using such direct access.

 1000 *SAVE CLEAR.BUBIT
 1010 *--------------------------------
 1020 MLI .EQ $BF00
 1030 BUBIT .EQ $BF95
 1040 *--------------------------------
 1050 BELL .EQ $FBDD
 1060 CROUT .EQ $FD8E
 1070 PRBYTE .EQ $FDDA
 1080 COUT .EQ $FDED
 1090 *--------------------------------
 1100 .MA MLI
 1110 JSR MLI
 1120 .DA #]1,]2
 1130 BCS ERROR
 1140 .EM
 1150 *--------------------------------
 1160 CLEAR.BUBIT
 1170 JSR GET.FILE.INFO.AND.DISPLAY.IT
 1180 LDA INFO+3
 1190 AND #$DF CLEAR BACKUP BIT
 1200 STA INFO+3
 1210 DEC BUBIT BUBIT = $FF
 1220 LDA #$07
 1230 STA INFO
 1240 >MLI $C3,INFO SET INFO, CLEARING BUBIT
 1250 *--------------------------------
 1260 GET.FILE.INFO.AND.DISPLAY.IT
 1270 LDA #$0A
 1280 STA INFO
 1290 >MLI $C4,INFO READ AND DISPLAY NEW INFO
 1300 LDY #3
 1310 .1 LDA INFO,Y
 1320 JSR PRBYTE
 1330 LDA #"."
 1340 JSR COUT
 1350 INY
 1360 CPY #18

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 160 of 168

 1370 BCC .1
 1380 JMP CROUT
 1390 *--------------------------------
 1400 ERROR JSR PRBYTE
 1410 JMP BELL
 1420 *--------------------------------
 1430 INFO .HS 0A
 1440 .DA PATH
 1450 .BS 15
 1460 *--------------------------------
 1470 PATH .DA #LEN
 1480 .AS /PRODOS/
 1490 LEN .EQ *-PATH-1
 1500 *--------------------------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 161 of 168

It's 1988, and ProDOS Thinks it's 1982

Bob Sander-Cederlof

December 1987

If you are still using ProDOS 1.1.1, and you have some sort of clock card such as
Thunderclock, TimeMaster, or any other "standard" ProDOS clock, you have a problem.
Apple built this bug into ProDOS, and they came out with the new versions (they call
it ProDOS-8 version 1.4 now) just in time.

In my article about the clock driver in the November 1983 issue of AAL (pages 25-28),
I discussed the problem. It seemed a little more remote at the time. Apple based
ProDOS on the Thunderclock, even though that device does not keep track of the year.
The ProDOS clock driver reads the Month, Day, and Day of Week information and does
some arithmetic to determine which of six years could produce that day of week on the
corresponding month and day. ProDOS 1.1.1 and earlier versions could produce dates
from 1982 through 1987. When 1988 rolled around a few weeks ago, hundreds of
thousands of Applers around the world slipped back in time to 1982.

And it is not funny! Some programs will not let you operate if the dates are not
correct!

Well, there are at least four ways around the problem. You can remove your clock
card, and type the date in manually wherever it is really needed. Not very nice.

Or, you can get the up-to-date version of ProDOS, now called ProDOS-8 Version 1.4.
You can get it, and then you can copy it to every floppy (both 3 1/2 and 5 1/4), to
every RamFactor, to every hard disk in sight. This is tedious, but it is the best
solution. If you have a friendly dealer, you can get it from the IIgs system disk.
But don't copy the file named PRODOS from this disk (that is only a loader now).
Instead, copy the file named P8 from the subdirectory SYSTEM. P8 is a longer file
than version 1.1.1 of PRODOS was, so if you use BSAVE to put it on your disks be sure
to specify the L parameter. Something like this should do the trick:

Boot any ProDOS disk, preferably one with version 1.4 so the correct dates will get
into the file directories you are updating. Get into the S-C Macro Assembler or
Applesoft. With the latest IIgs system disk in your drive, type:

 BLOAD SYSTEM/P8,TSYS,A$2000

Now put the disk you want to update into a drive, and type the following. You may
want to include slot and drive parameters, or set the prefix to the appropriate value
for a ram disk or hard disk.

 UNLOCK PRODOS
 BSAVE PRODOS,TSYS,A$2000,L$3C7D
 LOCK PRODOS

A third approach saves you a trip to the dealer. You can simply PATCH the copies of
ProDOS version 1.1.1 to give you the correct year. When you BLOAD the file named
PRODOS at $2000, the six-year table is at $4F76. If you look there now you will find
the following bytes:

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 162 of 168

 4F76: 54 54 53 52 57 56 55

These correspond to the years 1984, 1984, 1983, 1982, 1987, 1986, and 1985. Notice
that 1984, being a leap year, takes up two of the values. Patch these seven bytes,
using the monitor, as follows:

 4F76:5A 59 58 58 57 56 5B

The table now includes the years from 1986 through 1991. If you want 1992 in there
also, substitute 5C where I have 57 and 56 above. Both 1988 and 1992 are leap years,
so they both take two table positions. When ProDOS 1.4 was released it was still
1987, so there was not room for 1992 in the table.

A fourth possible solution was suggested by reader Garth O'Donnell. You can replace
the clock driver inside ProDOS with one that reads the year directly from your clock
card! This is what happens when you boot Version 1.4 in a IIgs, because P8 senses
that you are in a IIgs and plugs in a different driver. But if you are still using an
older Apple, as most of us are, you can modify the PRODOS file to load an intelligent
driver for your own clock card. Of course, if you are using a Thunderclock, the
driver with the above patches is the best you can do. But if you have a TimeMaster,
as Garth does, you can use a program like he wrote.

I decided to try my hand at modifying the standard clock driver so that it uses the
year information in the TimeMaster. The following program is derived directly from
the standard driver, with as few modifications as possible. It still resides in the
ProDOS SYS file at $4F00, but it is a lot shorter. (Maybe you can think of something
useful to do with the extra 45 bytes!) It still depends upon the standard ProDOS
loader to plug in the actual slot number in lines 1260 and 1310. The major change I
made was to call on the ":" instead of the "#" mode. The "#" mode is a ThunderClock
mode, which does not return the year. The ":" mode is a TimeMaster mode, which does
return the year.

If you have an Applied Engineering Serial Pro card, which includes a TimeMaster
compatible clock, you can use the driver I wrote by making the single change as shown
in the comments on line 1090. Or, maybe you could use those extra 45 bytes for a
subroutine that would check which clock is in the slot and make the appropriate
changes at run time.

 1000 *SAVE S.CLOCK.1988
 1010 *--------------------------------
 1020 * IF THE PRODOS BOOT RECOGNIZES A TIMEMASTER,
 1030 * A "JMP $D742" IS INSTALLED AT $BF06 AND
 1040 * THE SLOT ADDRESS IS PATCHED INTO THE FOLLOWING
 1050 * CODE AT SLOT.A AND SLOT.B BELOW.
 1060 *--------------------------------
 1070 * DEFINE CLOCK ENTRY POINT
 1080 *--------------------------------
 1090 CLOCK .EQ $C108 <<<USE $C11D FOR AE SERIAL PRO>>>
 1100 *--------------------------------
 1110 DATE .EQ $BF90 $BF91 = YYYYYYYM
 1120 * $BF90 = MMMDDDDD
 1130 TIME .EQ DATE+2 $BF93 = 000HHHHH
 1140 * $BF92 = 00MMMMMM
 1150 MODE .EQ $5F8-$C0 TIMEMASTER MODE IN SCREEN HOLE
 1160 *--------------------------------
 1170 .OR $4F00

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 163 of 168

 1180 .TF B.CLOCK.DRIVER
 1190 .PH $D742
 1200 *--------------------------------
 1210 PRODOS.TIMEMASTER.DRIVER
 1220 LDX SLOT.B $CN
 1230 LDA MODE,X SAVE CURRENT TIMEMASTER MODE
 1240 PHA
 1250 LDA #":" SEND ":" TO TIMEMASTER
 1260 JSR CLOCK+3 SELECT TIMEMASTER MODE
 1270 SLOT.A .EQ *-1
 1280 *--------------------------------
 1290 * READ TIME & DATE INTO $200...$211 IN FORMAT:
 1300 *--------------------------------
 1310 JSR CLOCK
 1320 SLOT.B .EQ *-1
 1330 *--------------------------------
 1340 * CONVERT ASCII VALUES TO BINARY
 1350 * $3E -- MINUTE
 1360 * $3D -- HOUR
 1370 * $3C -- YEAR
 1380 * $3B -- DAY OF MONTH
 1390 * $3A -- MONTH
 1400 *--------------------------------
 1410 CLC
 1420 LDX #4
 1430 LDY #12 POINT AT MINUTE
 1440 .1 LDA $203,Y TEN'S DIGIT
 1450 AND #$0F IGNORE TOP BIT
 1460 STA $3A MULTIPLY DIGIT BY TEN
 1470 ASL *2
 1480 ASL *4
 1490 ADC $3A *5
 1500 ASL *10
 1510 ADC $204,Y ADD UNIT'S DIGIT
 1520 SEC
 1530 SBC #$B0 SUBTRACT ASCII ZERO
 1540 STA $3A,X STORE VALUE
 1550 DEY BACK UP TO PREVIOUS FIELD
 1560 DEY
 1570 DEY
 1580 DEX BACK UP TO PREVIOUS VALUE
 1590 BPL .1 ...UNTIL ALL 5 FIELDS CONVERTED
 1600 *--------------------------------
 1610 * PACK MONTH AND DAY OF MONTH,
 1620 *--------------------------------
 1630 TAY MONTH (1...12)
 1640 LSR 00000ABC--D
 1650 ROR D00000AB--C
 1660 ROR CD00000A--B
 1670 ROR BCD00000--A
 1680 ORA $3B MERGE DAY OF MONTH
 1690 STA DATE SAVE PACKED DAY AND MONTH
 1700 *--------------------------------
 1710 LDA $3C YEAR
 1720 ROL MERGE TOP MONTH BIT
 1730 STA DATE+1 YYYYYYYM

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 164 of 168

 1740 *--------------------------------
 1750 LDA $3D GET HOUR
 1760 STA TIME+1
 1770 LDA $3E GET MINUTE
 1780 STA TIME
 1790 PLA RESTORE TIMEMASTER MODE
 1800 LDX SLOT.B GET $CN FOR INDEX
 1810 STA MODE,X
 1820 RTS
 1830 *--------------------------------
 1840 .EP
 1850 *--------------------------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 165 of 168

Printing the ProDOS Date and Time

Bob Sander-Cederlof

February 1988

ProDOS-8 stores the date and time information from in four bytes in the Global Page
starting at $BF90:

 $BF90: MMMDDDDD Low-order bits of Month, Day (1-31)
 $BF91: YYYYYYYM Year (0-99), high bit of Month
 $BF92: 00mmmmmm Minute (0-59)
 $BF93: 00hhhhhh Hour (0-23)

The following subroutine, lines 1000-1590, will print out the date in the form DD-
MMM-YY. Lines 1600-1800 are an alternative method for printing out the 3-letter month
name abbreviation. Lines 1810-1910 print the time in the form hh:mm.

The value stored in the Global Page may not be current. It is automatically updated
every time you close or flush a file, or you can force it to be updated by using the
MLI call shown in lines 1920-end. If you have looked into the Global Page description
in the manuals, you may have noticed that $BF06 is a vector to the date/time update
code. Don't try to use it directly unless you are sure the Language Card is properly
switched before and after the call. The best way is to use the MLI call, as I did.

 1000 *SAVE PRINT.DATE
 1010 .LIST MOFF
 1020 *--------------------------------
 1030 * Subroutine to print date from ProDOS Global Page
 1040 * in form DD-MMM-YY.
 1050 * Two different methods for printing the 3-letter month
 1060 * name are shown, with month-name table in normal and
 1070 * transposed order.
 1080 *--------------------------------
 1090 DATE .EQ $BF90,BF91 Date in form: MMMDDDDD, YYYYYYYM
 1100 * Time in form: 00mmmmmm, 000hhhhh
 1110 COUT .EQ $FDED
 1120 *--------------------------------
 1130 PRINT.DATE
 1140 LDA DATE Get MMMDDDDD
 1150 AND #$1F Isolate Day of Month
 1160 JSR PD Print the day number
 1170 LDA #"- Print a dash
 1180 JSR COUT
 1190 *----PRINT MONTH FROM TABLE------
 1200 LDA DATE+1 Get YYYYYYYM
 1210 LSR High bit of Month-number into Carry
 1220 PHA Save 0YYYYYYY on stack
 1230 LDA DATE Get MMMDDDDD
 1240 ROR MMMMDDDD
 1250 LSR 0MMMMDDD
 1260 LSR 00MMMMDD
 1270 LSR 000MMMMD
 1280 LSR 0000MMMM Month number (1-12)

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 166 of 168

 1290 TAX
 1300 LDA MONTH.TBL.1-1,X 1st letter
 1310 JSR COUT
 1320 LDA MONTH.TBL.2-1,X 2nd letter
 1330 JSR COUT
 1340 LDA MONTH.TBL.3-1,X 3rd letter
 1350 JSR COUT
 1360 LDA #"- Print dash
 1370 JSR COUT
 1380 *----PRINT YEAR------------------
 1390 PLA GET 0YYYYYYY FROM STACK
 1400 *---Fall into PD subroutine------
 1410 PD LDX #"0"-1 Start with ASCII zero-1
 1420 SEC Set up subtraction
 1430 .1 INX Increment ten's digit
 1440 SBC #10 Take out ten
 1450 BCS .1 Still more tens
 1460 ADC #"0"+10 Add back one ten, and make ASCII
 1470 PHA Save unit's digit
 1480 TXA Get ten's digit
 1490 JSR COUT Print ten's digit
 1500 PLA Get unit's digit
 1510 JMP COUT and print it
 1520 *--------------------------------
 1530 .MA AS
 1540 .AS -/]1/
 1550 .EM
 1560 *--------------------------------
 1570 MONTH.TBL.1 >AS "JFMAMJJASOND"
 1580 MONTH.TBL.2 >AS "AEAPAUUUECOE"
 1590 MONTH.TBL.3 >AS "NBRRYNLGPTVC"
 1600 *--------------------------------
 1610 ALTERNATIVE.MONTH.PRINTER
 1620 LDA DATE+1 GET YYYYYYYM
 1630 LSR M INTO CARRY
 1640 LDA DATE GET MMMDDDDD
 1650 ROR MMMMDDDD
 1660 LSR 0MMMMDDD
 1670 LSR 00MMMMDD
 1680 LSR 000MMMMD
 1690 LSR 0000MMMM
 1700 STA TEMP Multiply month number by 3
 1710 ASL
 1720 ADC TEMP
 1730 TAX Index is 3,6,9,...
 1740 LDY #3 Print 3 consectutive letters
 1750 .1 LDA MONTH.TABLE-3,X
 1760 JSR COUT
 1770 INX Next letter
 1780 DEY
 1790 BNE .1
 1800 RTS Finished
 1810 *--------------------------------
 1820 TEMP .BS 1
 1830 MONTH.TABLE >AS "JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC"
 1840 *--------------------------------

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 167 of 168

 1850 PRINT.TIME
 1860 LDA DATE+3 Get 00hhhhhh
 1870 JSR PD
 1880 LDA #":"
 1890 JSR COUT
 1900 LDA DATE+2 Get 00mmmmmm
 1910 JMP PD
 1920 *--------------------------------
 1930 UPDATE.DATE.AND.TIME
 1940 JSR $BF00 MLI ENTRY POINT
 1950 .DA #$82,0000 GET DATE/TIME, NO PARMS
 1960 RTS
 1970 *--------------------------------
 1980 .LIST OFF

 Apple][Computer Information

Apple][ProDOS Operating System Technical Information
Apple Assembly Line • Bob Sander-Cederlof • 1983-1988 • Page 168 of 168

BLOADing Directories

Bob Sander-Cederlof

April 1988

Did you know that ProDOS will let you BLOAD a directory just like any other kind of
file? I did not until today.

For example, if I want to load the directory of my Sider hard disk into memory, I can
type BLOAD /HARD1,TDIR,A$1000. I can load in any subdirectory the same way. This
works under both BASIC.SYSTEM (Applesoft) and SCASM.SYSTEM (the S-C Macro Assembler)
shells.

In both cases, if you care to, you can find the length of the directory in bytes in
locations $BEDB and $BEDC. $BEDB will always contain 00, and $BEDC will be the number
of pages in the directory, or twice the number of blocks.

I tried BSAVEing... but it is prohibited. You get a FILE LOCKED message for your
efforts.

